ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast dynamics in chemical systems provide a unique access to fundamental processes at the molecular scale. A proper description of such systems is often very challenging because of the quantum nature of the problem. The concept of matrix product states (MPS), however, has proven its performance in describing such correlated quantum system in recent years for a wide range of applications. In this work, we continue the development of the MPS approach to study ultrafast electron dynamics in quantum chemical systems. The method combines time evolution schemes, such as fourth-order Runge-Kutta and Krylov space time evolution, with MPS, in order to solve the time-dependent Schrodinger equation efficiently. This allows for describing electron dynamics in molecules on a full configurational interaction (CI) level for a few femtoseconds after excitation. As a benchmark, we compare MPS based calculations to full CI calculations for a chain of hydrogen atoms and for the water molecule. Krylov space time evolution is in particular suited for the MPS approach, as it provides a wide range of opportunities to be adjusted to the reduced MPS dimension case. Finally, we apply the MPS approach to describe charge migration effects in iodoacetylene and find direct agreement between our results and experimental observations.
The importance of multi-electron dynamics during the tunnel ionization of a correlated quantum system is investigated. By comparison of the solution of the time-dependent Schru007fodinger equation (TDSE) with the time-dependent configuration interact ion singles approach (TDCIS), we demonstrate the importance of a multi-electron description of the tunnel ionization process especially for weakly confined quantum systems. Within this context, we observe that adiabatic driving by an intense light field can even enhance the correlations between still trapped electrons.
We investigate theoretically the non-linear dynamics of a coupled nanomechanical oscillator. Under a weak radio frequency excitation, the resonators can be parametrically tuned into a self-sustained oscillatory regime. The transfer of electrons from one contact to the other is then mechanically assisted, generating a rectified current. The direction of the rectified current is, in most unstable regions, determined by the phase shift between the mechanical oscillations and the signal. However, we locate intriguing parametrical regions of uni-directional rectified current, suggesting a practical scheme for the realization of a self-powered device in the nanoscale. In these regions, a dynamical symmetry breaking is induced by the non-linear coupling of the mechanical and electrical degrees of freedom. When operating within the Coulomb blockade limit, we locate bands of instability of enhanced gain.
We study the dependency of the quantum spin dynamics on the particle number in a system of ultracold spin-1 atoms within the single-spatial-mode approximation. We find, for all strengths of the spin-dependent interaction, convergence towards the mean -field dynamics in the thermodynamic limit. The convergence is, however, particularly slow when the spin-changing collisional energy and the quadratic Zeeman energy are equal, i.e. deviations between quantum and mean-field spin dynamics may be extremely large under these conditions. Our estimates show, that quantum corrections to the mean-field dynamics may play a relevant role in experiments with spinor Bose-Einstein condensates. This is especially the case in the regime of few atoms, which may be accessible in optical lattices. Here, spin dynamics is modulated by a beat note at large magnetic fields due to the significant influence of correlated many-body spin states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا