ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-wavelength images from the farUV (~0.15 micron) to the sub-millimeter of the central region of the galaxy NGC 3351 are analyzed to constrain its stellar populations and dust attenuation. Despite hosting a ~1 kpc circumnuclear starburst ring, NG C 3351 deviates from the IRX-beta relation, the relation between the infrared-to-UV luminosity ratio and the UV continuum slope (beta) that other starburst galaxies follow. To understand the reason for the deviation, we leverage the high angular resolution of archival nearUV-to-nearIR HST images to divide the ring into ~60-180 pc size regions and model each individually. We find that the UV slope of the combined intrinsic (dust-free) stellar populations in the central region is redder than what is expected for a young model population. This is due to the regions complex star formation history, which boosts the nearUV emission relative to the farUV. The resulting net attenuation curve has a UV slope that lies between those of the starburst attenuation curve (Calzetti et al. 2000) and the Small Magellanic Cloud extinction curve; the total-to-selective attenuation value, R(V)=4.93, is larger than both. As found for other star-forming galaxies, the stellar continuum of NGC 3351 is less attenuated than the ionized gas, with E(B-V)_{star}=0.40 E(B-V)_{gas}. The combination of the `red intrinsic stellar population and the new attenuation curve fully accounts for the location of the central region of NGC 3351 on the IRX-beta diagram. Thus, the observed characteristics result from the complex mixture of stellar populations and dust column densities in the circumnuclear region. Despite being a sample of one, these findings highlight the difficulty of defining attenuation curves of general applicability outside the regime of centrally-concentrated starbursts.
We present a machine learning (ML) pipeline to identify star clusters in the multi{color images of nearby galaxies, from observations obtained with the Hubble Space Telescope as part of the Treasury Project LEGUS (Legacy ExtraGalactic Ultraviolet Sur vey). StarcNet (STAR Cluster classification NETwork) is a multi-scale convolutional neural network (CNN) which achieves an accuracy of 68.6% (4 classes)/86.0% (2 classes: cluster/non-cluster) for star cluster classification in the images of the LEGUS galaxies, nearly matching human expert performance. We test the performance of StarcNet by applying pre-trained CNN model to galaxies not included in the training set, finding accuracies similar to the reference one. We test the effect of StarcNet predictions on the inferred cluster properties by comparing multi-color luminosity functions and mass-age plots from catalogs produced by StarcNet and by human-labeling; distributions in luminosity, color, and physical characteristics of star clusters are similar for the human and ML classified samples. There are two advantages to the ML approach: (1) reproducibility of the classifications: the ML algorithms biases are fixed and can be measured for subsequent analysis; and (2) speed of classification: the algorithm requires minutes for tasks that humans require weeks to months to perform. By achieving comparable accuracy to human classifiers, StarcNet will enable extending classifications to a larger number of candidate samples than currently available, thus increasing significantly the statistics for cluster studies.
Using the star cluster catalogs from the Hubble Space Telescope program Legacy ExtraGalactic UV survey (LEGUS) and 8 $mu$m images from the IRAC camera on the Spitzer Space Telescope for 5 galaxies within 5 Mpc, we investigate how the 8 $mu$m dust lum inosity correlates with the stellar age on the 30--50 pc scale of star forming regions. We construct a sample of 97 regions centered at local peaks of 8 $mu$m emission, each containing one or more young star cluster candidates from the LEGUS catalogs. We find a tight anti-correlation with a Pearson correlation coefficient of $r=-0.84pm0.05$ between the mass-normalized dust-only 8 $mu$m luminosity and the age of stellar clusters younger than 1 Gyr; the 8 $mu$m luminosity decreases with increasing age of the stellar population. Simple assumptions on a combination of stellar and dust emission models reproduce the observed trend. We also explore how the scatter of the observed trend depends on assumptions of stellar metallicity, PAH abundance, fraction of stellar light absorbed by dust, and instantaneous versus continuous star formation models. We find that variations in stellar metallicity have little effect on the scatter, while PAH abundance and the fraction of dust-absorbed light bracket the full range of the data. We also find that the trend is better explained by continuous star formation, rather than instantaneous burst models. We ascribe this result to the presence of multiple star clusters with different ages in many of the regions. Upper limits of the dust-only 8 $mu$m emission as a function of age are provided.
We present images from the Solar Blind Channel on HST that resolve hundreds of far ultraviolet (FUV) emitting stars in two ~1 kpc$^2$ interarm regions of the grand-design spiral M101. The luminosity functions of these stars are compared with predicte d distributions from simple star formation histories, and are best reproduced when the star formation rate has declined recently (past 10-50 Myr). This pattern is consistent with stars forming within spiral arms and then streaming into the interarm regions. We measure the diffuse FUV surface brightness after subtracting all of the detected stars, clusters and background galaxies. A residual flux is found for both regions which can be explained by a mix of stars below our detection limit and scattered FUV light. The amount of scattered light required is much larger for the region immediately adjacent to a spiral arm, a bright source of FUV photons.
52 - Rupali Chandar 2014
We study star clusters in two fields in the nearby spiral galaxy M83 using broad and narrow band optical imaging taken with the WFC3 on-board HST. We present results based on several different catalogs of star clusters in an inner and outer field, an d conclude that different methods of selection do not strongly impact the results, particularly for clusters older than $approx$10 Myr. The age distributions can be described by a power law, $dN/dtau proptotau^{gamma}$, with $gammaapprox -$0.84$pm$0.12 in the inner field, and $gammaapprox -$0.48$pm$0.12 in the outer field for $taugtrsim$10 Myr. We bracket the difference, $Delta gamma$, between the two fields to be in the range 0.18$-$0.36, based on estimates of the relative star formation histories. The mass functions can also be described by a power law, $dN/dMpropto M^{beta}$, with $betaapprox -$1.98$pm$0.14 and $betaapprox $2.34$pm$0.26 in the inner and outer fields, respectively. We conclude that the shapes of the mass and age distributions of the clusters in the two fields are similar, as predicted by the quasi-universal model. Any differences between the two fields are at the $approx$2$-$3$sigma (approx$1$-$2$sigma)$ level for the age (mass) distributions. Therefore any dependence of these distributions on the local environment is probably weak. We compare the shapes of the distributions with those predicted by two popular cluster disruption models, and find that both show evidence that the clusters are disrupted at a rate that is approximately independent of their mass, but that the observational results do not support the earlier disruption of lower mass clusters relative to their higher mass counterparts.
We investigate the far-infrared (IR) dust emission for 20 local star forming galaxies from the Key Insights on Nearby Galaxies: A Far-IR Survey with Herschel (KINGFISH) sample. We model the far-IR/submillimeter spectral energy distribution (SED) usin g images from Spitzer Space Telescope and Herschel Space Observatory. We calculate the cold dust temperature (T(cold)) and emissivity (beta) on a pixel by pixel basis (where each pixel ranges from 0.1-3 kpc^2) using a two temperature modified blackbody fitting routine. Our fitting method allows us to investigate the resolved nature of temperature and emissivity variations by modeling from the galaxy centers to the outskirts (physical scales of ~15-50 kpc, depending on the size of the galaxy). We fit each SED in two ways: (1) fit T(cold) and beta simultaneously, (2) hold beta constant and fit T(cold). We compare T(cold) and beta with star formation rates (calculated from L(Halpha) and L(24)), the luminosity of the old stellar population (traced through L(3.6), and the dust mass surface density (traced by 500 micron luminosity, L(500)). We find a significant trend between SFR/L(500) and T(cold), implying that the flux of hard UV photons relative to the amount of dust is significantly contributing to the heating of the cold, or diffuse, dust component. We also see a trend between L(3.6)/L(500) and beta, indicating that the old stellar population contributes to the heating at far-IR/submillimeter wavelengths. Finally, we find that when beta is held constant, T(cold) exhibits a strongly decreasing radial trend, illustrating that the shape of the far-IR SED is changing radially through a galaxy, thus confirming on a sample almost double in size the trends observed in Galametz et al. (2012).
61 - Guilin Liu 2013
We present HST/WFC3 narrow-band imaging of the starburst galaxy M83 targeting the hydrogen recombination lines (H$beta$, H$alpha$ and Pa$beta$), which we use to investigate the dust extinction in the HII regions. We derive extinction maps with 6 pars ec spatial resolution from two combinations of hydrogen lines (H$alpha$/H$beta$ and H$alpha$/Pa$beta$), and show that the longer wavelengths probe larger optical depths, with $A_V$ values larger by $gtrsim$1 mag than those derived from the shorter wavelengths. This difference leads to a factor $gtrsim$2 discrepancy in the extinction-corrected H$alpha$ luminosity, a significant effect when studying extragalactic HII regions. By comparing these observations to a series of simple models, we conclude that a large diversity of absorber/emitter geometric configurations can account for the data, implying a more complex physical structure than the classical foreground dust screen assumption. However, most data points are bracketed by the foreground screen and a model where dust and emitters are uniformly mixed. When averaged over large ($gtrsim$100--200 pc) scales, the extinction becomes consistent with a dust screen, suggesting that other geometries tend to be restricted to more local scales. Moreover, the extinction in any region can be described by a combination of the foreground screen and the uniform mixture model with weights of 1/3 and 2/3 in the center ($lesssim$2 kpc), respectively, and 2/3 and 1/3 for the rest of the disk. This simple prescription significantly improves the accuracy of the dust extinction corrections and can be especially useful for pixel-based analyses of galaxies similar to M83.
Submillimeter excess emission has been reported at 500 microns in a handful of local galaxies, and previous studies suggest that it could be correlated with metal abundance. We investigate the presence of an excess submillimeter emission at 500 micro ns for a sample of 20 galaxies from the Key Insights on Nearby Galaxies: a Far Infrared Survey with Herschel (KINGFISH) that span a range of morphologies and metallicities (12+log(O/H)=7.8-8.7). We probe the far-infrared (IR) emission using images from the Spitzer Space Telescope and Herschel Space Observatory in the wavelength range 24-500 microns. We model the far-IR peak of the dust emission with a two-temperature modified blackbody and measure excess of the 500 micron photometry relative to that predicted by our model. We compare the submillimeter excess, where present, with global galaxy metallicity and, where available, resolved metallicity measurements. We do not find any correlation between the 500 micron excess and metallicity. A few individual sources do show excess (10-20%) at 500 microns; conversely, for other sources, the model overpredicts the measured 500 micron flux density by as much as 20%, creating a 500 micron deficit. None of our sources has an excess larger than the calculated 1-sigma uncertainty, leading us to conclude that there is no substantial excess at submillimeter wavelengths at or shorter than 500 microns in our sample. Our results differ from previous studies detecting 500 micron excess in KINGFISH galaxies largely due to new, improved photometry used in this study.
We use the near--infrared Brgamma hydrogen recombination line as a reference star formation rate (SFR) indicator to test the validity and establish the calibration of the {it Herschel} PACS 70 mu m emission as a SFR tracer for sub--galactic regions i n external galaxies. Brgamma offers the double advantage of directly tracing ionizing photons and of being relatively insensitive to the effects of dust attenuation. For our first experiment, we use archival CFHT Brgamma and Ks images of two nearby galaxies: NGC,5055 and NGC,6946, which are also part of the {it Herschel} program KINGFISH (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel). We use the extinction corrected Brgamma emission to derive the SFR(70) calibration for H{sc ii} regions in these two galaxies. A comparison of the SFR(70) calibrations at different spatial scales, from 200 pc to the size of the whole galaxy, reveals that about 50% of the total 70mu m emission is due to dust heated by stellar populations that are unrelated to the current star formation. We use a simple model to qualitatively relate the increase of the SFR(70) calibration coefficient with decreasing region size to the star formation timescale. We provide a calibration for an unbiased SFR indicator that combines the observed Halpha with the 70 mu m emission, also for use in H{sc ii} regions. We briefly analyze the PACS 100 and 160 mu m maps and find that longer wavelengths are not as good SFR indicators as 70mu m, in agreement with previous results. We find that the calibrations show about 50% difference between the two galaxies, possibly due to effects of inclination.
Combining Ha and IRAC images of the nearby spiral galaxy NGC 628, we find that between 30-43% of its 8um dust emission is not related to recent star formation. Contributions from dust heated by young stars are separated by identifying HII regions in the Ha map and using these areas as a mask to determine the 8um dust emission that must be due to heating by older stars. Corrections are made for sub-detection-threshold HII regions, photons escaping from HII regions and for young stars not directly associated to HII regions (i.e. 10-100 Myr old stars). A simple model confirms this amount of 8um emission can be expected given dust and PAH absorption cross-sections, a realistic star-formation history, and the observed optical extinction values. A Fourier power spectrum analysis indicates that the 8um dust emission is more diffuse than the Ha emission (and similar to observed HI), supporting our analysis that much of the 8um-emitting dust is heated by older stars. The 8um dust-to-Ha emission ratio declines with galactocentric radius both within and outside of HII regions, probably due to a radial increase in disk transparency. In the course of this work, we have also found that intrinsic diffuse Ha fractions may be lower than previously thought in galaxies, if the differential extinction between HII regions and diffuse regions is taken into account.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا