ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyse the fifth roAp star reported in the Kepler field, KIC 7582608, discovered with the SuperWASP project. The object shows a high frequency pulsation at 181.7324 d$^{-1}$ (P=7.9 min) with an amplitude of 1.45 mmag, and low frequency rotational modulation corresponding to a period of 20.4339 d with an amplitude of 7.64 mmag. Spectral analysis confirms the Ap nature of the target, with characteristic lines of Eu II, Nd III and Pr III present. The spectra are not greatly affected by broadening, which is consistent with the long rotational period found from photometry. From our spectral observations we derive a lower limit on the mean magnetic field modulus of <B> = 3.05$pm$0.23 kG. Long Cadence Kepler observations show a frequency quintuplet split by the rotational period of the star, typical for an oblique pulsator. We suggest the star is a quadrupole pulsator with a geometry such that $isim66^circ$ and $betasim33^circ$. We detect frequency variations of the pulsation in both the WASP and Kepler data sets on many time scales. Linear, non-adiabatic stability modelling allows us to constrain a region on the HR diagram where the pulsations are unstable, an area consistent with observations.
The classical nova V5583 Sgr (Nova Sagittarii 2009 No 3) has been observed during the rise phase and shortly after by NASAs STEREO/HI instruments, with later optical spectroscopy obtained with the R-C Spectrograph at CTIO, Chile. The time of peak in the STEREO passband has been constrained to within 4 hours, as a result of the high cadence data obtained by STEREO/HI. The optical spectra show the nova evolving from the permitted to the nebular phases. The neon abundance in the ejecta is [Ne/O] > +1:0, which suggests that V5583 Sgr was most likely a neon nova.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا