ترغب بنشر مسار تعليمي؟ اضغط هنا

92 - Daniel R. Reese 2015
Massive and intermediate mass stars play a crucial role in astrophysics. Indeed, massive stars are the main producers of heavy elements, explode in supernovae at the end of their short lifetimes, and may be the progenitors of gamma ray bursts. Interm ediate mass stars, although not destined to explode in supernovae, display similar phenomena, are much more numerous, and have some of the richest pulsation spectra. A key to understanding these stars is understanding the effects of rapid rotation on their structure and evolution. These effects include centrifugal deformation and gravity darkening which can be observed immediately, and long terms effects such as rotational mixing due to shear turbulence, which prolong stellar lifetime, modify chemical yields, and impact the stellar remnant at the end of their lifetime. In order to understand these effects, a number of models have been and are being developed over the past few years. These models lead to increasingly sophisticated predictions which need to be tested through observations. A particularly promising source of constraints is seismic observations as these may potentially lead to detailed information on their internal structure. However, before extracting such information, a number of theoretical and observational hurdles need to be overcome, not least of which is mode identification. The present proceedings describe recent progress in modelling these stars and show how an improved understanding of their pulsations, namely frequency patterns, mode visibilities, line profile variations, and mode excitation, may help with deciphering seismic observations.
Recent observations of rapidly rotating stars have revealed the presence of regular patterns in their pulsation spectra. This has raised the question as to their physical origin, and in particular, whether they can be explained by an asymptotic frequ ency formula for low-degree acoustic modes, as recently discovered through numerical calculations and theoretical considerations. In this context, a key question is whether compositional/density gradients can adversely affect such patterns to the point of hindering their identification. To answer this question, we calculate frequency spectra using two-dimensional ESTER stellar models. These models use a multi-domain spectral approach, allowing us to easily insert a compositional discontinuity while retaining a high numerical accuracy. We analyse the effects of such discontinuities on both the frequencies and eigenfunctions of pulsation modes in the asymptotic regime. We find that although there is more scatter around the asymptotic frequency formula, the semi-large frequency separation can still be clearly identified in a spectrum of low-degree acoustic modes.
Many early-type stars have been measured with high angular velocities. In such stars, mode identification is difficult as the effects of fast and differential rotation are not well known. Using fundamental parameters measured by interferometry, the E STER structure code and the TOP oscillation code, we investigate the oscillation spectrum of Rasalhague (alpha Ophiuchi), for which observations by the MOST satellite found 57 oscillations frequencies. Results do not show a clear identification of the modes and highlight the difficulties of asteroseismology for such stars with a very complex oscillation spectrum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا