ترغب بنشر مسار تعليمي؟ اضغط هنا

Asteroseismology of fast-rotating stars: the example of alpha Ophiuchi

127   0   0.0 ( 0 )
 نشر من قبل Giovanni Mirouh
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many early-type stars have been measured with high angular velocities. In such stars, mode identification is difficult as the effects of fast and differential rotation are not well known. Using fundamental parameters measured by interferometry, the ESTER structure code and the TOP oscillation code, we investigate the oscillation spectrum of Rasalhague (alpha Ophiuchi), for which observations by the MOST satellite found 57 oscillations frequencies. Results do not show a clear identification of the modes and highlight the difficulties of asteroseismology for such stars with a very complex oscillation spectrum.



قيم البحث

اقرأ أيضاً

Early-type stars generally tend to be fast rotators. In these stars, mode identification is very challenging as the effects of rotation are not well known. We consider here the example of $alpha$ Ophiuchi, for which dozens of oscillation frequencies have been measured. We model the star using the two-dimensional structure code ESTER, and we compute both adiabatic and non-adiabatic oscillations using the TOP code. Both calculations yield very complex spectra, and we used various diagnostic tools to try and identify the observed pulsations. While we have not reached a satisfactory mode-to-mode identification, this paper presents promising early results.
142 - J.D. Monnier 2010
Despite a century of remarkable progress in understanding stellar interiors, we know surprisingly little about the inner workings of stars spinning near their critical limit. New interferometric imaging of these so-called ``rapid rotators combined wi th breakthroughs in asteroseismology promise to lift this veil and probe the strongly latitude-dependent photospheric characteristics and even reveal the internal angular momentum distribution of these luminous objects. Here, we report the first high precision photometry on the low-amplitude delta cuti variable star Rasalhague (alpha Oph, A5IV, 2.18 Msun, omega/omega_c~0.88) based on 30 continuous days of monitoring using the MOST satellite. We have identified 57+/-1 distinct pulsation modes above a stochastic granulation spectrum with a cutoff of ~26 cycles per day. Remarkably, we have also discovered that the fast rotation period of 14.5~hours modulates low-frequency modes (1-10 day periods) that we identify as a rich family of g-modes (|m| up to 7). The spacing of the g-modes is surprisingly linear considering Coriolis forces are expected to strongly distort the mode spectrum, suggesting we are seeing prograde ``equatorial Kelvin waves (modes l=m). We emphasize the unique aspects of Rasalhague motivating future detailed asteroseismic modeling -- a source with a precisely measured parallax distance, photospheric oblateness, latitude temperature structure, and whose low-mass companion provides an astrometric orbit for precise mass determinations.
79 - M. Rieutord 2016
Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that ac count for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. First, the spectral discretization based on spherical harmonics and Chebyshev polynomials is used to represent the 2D axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a smooth spectral representation of the fields. The properties of Picard and Newton iterations for solving the nonlinear partial differential equations of the problem are discussed. It turns out that the Picard scheme is efficient on the computation of the simple polytropic stars, but Newton algorithm is unsurpassed when stellar models include complex microphysics. Finally, we discuss the numerical efficiency of our solver of Newton iterations. This linear solver combines the iterative Conjugate Gradient Squared algorithm together with an LU-factorization serving as a preconditionner of the Jacobian matrix.
97 - R. A. Garcia , J. Ballot 2019
Until the last few decades, investigations of stellar interiors had been restricted to theoretical studies only constrained by observations of their global properties and external characteristics. However, in the last thirty years the field has been revolutionized by the ability to perform seismic investigations of stellar interiors. This revolution begun with the Sun, where helioseismology has been yielding information competing with what can be inferred about the Earths interior from geoseismology. The last two decades have witnessed the advent of asteroseismology of solar-like stars, thanks to a dramatic development of new observing facilities providing the first reliable results on the interiors of distant stars. The coming years will see a huge development in this field. In this review we focus on solar-type stars, i.e., cool main-sequence stars where oscillations are stochastically excited by surface convection. After a short introduction and a historical overview of the discipline, we review the observational techniques generally used, and we describe the theory behind stellar oscillations in cool main-sequence stars. We continue with a complete description of the normal mode analyses through which it is possible to extract the physical information about the structure and dynamics of the stars. We then summarize the lessons that we have learned and discuss unsolved issues and questions that are still unanswered.
In our previous study of low mass stars using TESS, we found a handful which show a periodic modulation on a period <1 d but also displayed no flaring activity. Here we present the results of a systematic search for Ultra Fast Rotators (UFRs) in the southern ecliptic hemisphere which were observed in 2 min cadence with TESS. Using data from Gaia DR2, we obtain a sample of over 13,000 stars close to the lower main sequence. Of these, we identify 609 stars which lie on the lower main sequence and have a periodic modulation <1 d. The fraction of stars which show flares appears to drop significantly at periods <0.2 d. If the periods are a signature of the rotation rate, this would be a surprise, since faster rotators would be expected to have a stronger magnetic field and, therefore, produce more flares. We explore possible reasons for our finding: the flare inactive stars are members of binaries, in which case the stars rotation rate could have increased as the binary orbital separation reduced due to angular momentum loss over time, or that enhanced emission occurs at blue wavelengths beyond the pass band of TESS. Follow-up spectroscopy and flare monitoring at blue/ultraviolet wavelengths of these flare inactive stars are required to resolve this question.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا