ترغب بنشر مسار تعليمي؟ اضغط هنا

104 - Xiangcheng Ma 2015
We present a series of high-resolution (20-2000 Msun, 0.1-4 pc) cosmological zoom-in simulations at z~6 from the Feedback In Realistic Environment (FIRE) project. These simulations cover halo masses 10^9-10^11 Msun and rest-frame ultraviolet magnitud e Muv = -9 to -19. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback, which produce reasonable galaxy properties at z = 0-6. We post-process the snapshots with a radiative transfer code to evaluate the escape fraction (fesc) of hydrogen ionizing photons. We find that the instantaneous fesc has large time variability (0.01%-20%), while the time-averaged fesc over long time-scales generally remains ~5%, considerably lower than the estimate in many reionization models. We find no strong dependence of fesc on galaxy mass or redshift. In our simulations, the intrinsic ionizing photon budgets are dominated by stellar populations younger than 3 Myr, which tend to be buried in dense birth clouds. The escaping photons mostly come from populations between 3-10 Myr, whose birth clouds have been largely cleared by stellar feedback. However, these populations only contribute a small fraction of intrinsic ionizing photon budgets according to standard stellar population models. We show that fesc can be boosted to high values, if stellar populations older than 3 Myr produce more ionizing photons than standard stellar population models (as motivated by, e.g., models including binaries). By contrast, runaway stars with velocities suggested by observations can enhance fesc by only a small fraction. We show that sub-grid star formation models, which do not explicitly resolve star formation in dense clouds with n >> 1 cm^-3, will dramatically over-predict fesc.
Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SN Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, t he exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multi-dimensional simulations of ``tamped SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics, and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale-height of the disk, which depends sensitively on the binary mass ratio, and the total ${}^{56}$Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant, and show that a longer time delay between merger and explosion probably leads to larger ${}^{56}$Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical ``tamped SN Ia for explaining the class of ``super-Chandrasekhar SN Ia.
Merging white dwarfs are a possible progenitor of Type Ia supernovae (SNe Ia). While it is not entirely clear if and when an explosion is triggered in such systems, numerical models suggest that a detonation might be initiated before the stars have c oalesced to form a single compact object. Here we study such peri-merger detonations by means of numerical simulations, modeling the disruption and nucleosynthesis of the stars until the ejecta reach the coasting phase. Synthetic light curves and spectra are generated for comparison with observations. Three models are considered with primary masses 0.96 Msun, 1.06 Msun, and 1.20 Msun. Of these, the 0.96 Msun dwarf merging with an 0.81 Msun companion, with a Ni56 yield of 0.58 Msun, is the most promising candidate for reproducing common SNe Ia. The more massive mergers produce unusually luminous SNe Ia with peak luminosities approaching those attributed to super-Chandrasekhar mass SNe Ia. While the synthetic light curves and spectra of some of the models resemble observed SNe Ia, the significant asymmetry of the ejecta leads to large orientation effects. The peak bolometric luminosity varies by more than a factor of 2 with the viewing angle, and the velocities of the spectral absorption features are lower when observed from angles where the light curve is brightest. The largest orientation effects are seen in the ultraviolet, where the flux varies by more than an order of magnitude. Despite the large variation with viewing angle, the set of three models roughly obeys a width-luminosity relation, with the brighter light curves declining more slowly in the B-band. Spectral features due to unburned carbon from the secondary star are also seen in some cases.
313 - Cody Raskin , Daniel Kasen 2013
The merger of two white dwarfs may be preceded by the ejection of some mass in tidal tails, creating a circumstellar medium around the system. We consider the variety of observational signatures from this material, which depend on the lag time betwee n the start of the merger and the ultimate explosion (assuming one occurs) of the system in a Type Ia supernova. If the time lag is fairly short, the interaction of the supernova ejecta with the tails could lead to detectable shock emission at radio, optical, and/or x-ray wavelengths. At somewhat later times, the tails produce relatively broad NaID absorption lines with velocity widths of order the white dwarf escape speed ($sim 1000$ kms). That none of these signatures have been detected in normal SNe Ia constrains the lag time to be either very short ($lesssim 100$ s) or fairly long ($gtrsim 100$ yr). If the tails have expanded and cooled over timescales $sim 10^4$ yr, they could be observable through narrow NaID and CaII H&K absorption lines in the spectra, which are seen in some fraction of SNe Ia. Using a combination of 3D and 1D hydrodynamical codes, we model the mass-loss from tidal interactions in binary systems, and the subsequent interactions with the interstellar medium, which produce a slow-moving, dense shell of gas. We synthesize NaID line profiles by ray-casting through this shell, and show that in some circumstances tidal tails could be responsible for narrow absorptions similar to those observed.
Material ejected during (or immediately following) the merger of two neutron stars may assemble into heavy elements by the r-process. The subsequent radioactive decay of the nuclei can power electromagnetic emission similar to, but significantly dimm er than, an ordinary supernova. Identifying such events is an important goal of future transient surveys, offering new perspectives on the origin of r-process nuclei and the astrophysical sources of gravitational waves. Predictions of the transient light curves and spectra, however, have suffered from the uncertain optical properties of heavy ions. Here we consider the opacity of expanding r-process material and argue that it is dominated by line transitions from those ions with the most complex valence electron structure, namely the lanthanides. For a few representative ions, we run atomic structure models to calculate radiative data for tens of millions of lines. We find that the resulting r-process opacities are orders of magnitude larger than that of ordinary (e.g., iron-rich) supernova ejecta. Radiative transport calculations using these new opacities indicate that the transient emission should be dimmer and redder than previously thought. The spectra appear pseudo-blackbody, with broad absorption features, and peak in the infrared (~1 micron). We discuss uncertainties in the opacities and attempt to quantify their impact on the spectral predictions. The results have important implications for observational strategies to find and study the radioactively powered electromagnetic counterparts to compact object mergers.
We analyze the absorption and emission-line profiles produced by a set of simple, cool gas wind models motivated by galactic-scale outflow observations. We implement monte carlo radiative transfer techniques that track the propagation of scattered an d fluorescent photons to generate 1D spectra and 2D spectral images. We focus on the MgII 2796,28303 doublet and FeII UV1 multiplet at ~2600A, but the results are applicable to other transitions that trace outflows (e.g. NaI, Lya, SiII). By design, the resonance transitions show blue-shifted absorption but one also predicts strong resonance and fine-structure line-emission at roughly the systemic velocity. This line-emission `fills-in the absorption reducing the equivalent width by up to 50%, shift the absorption-lin centroid by tens of km/s, and reduce the effective opacity near systemic. Analysis of cool gas outflows that ignores this line-emission may incorrectly infer that the gas is partially covered, measure asignificantly lower peak optical depth, and/or conclude that gas at systemic velocity is absent. Because the FeII lines are connected by optically-thin transitions to fine-structure levels, their profiles more closely reproduce the intrinsic opacity of the wind. Together these results naturally explain the absorption and emission-line characteristics observed for star-forming galaxies at z<1. We also study a scenario promoted to describe the outflows of z~3 Lyman break galaxies and find prfiles inconsistent with the observations due to scattered photon emission. Although line-emission complicates the analysis of absorption-line profiles, the surface brightness profiles offer a unique means of assessing the morphology and size of galactic-scale winds. Furthermore, the kinematics and line-ratios offer powerful diagnostics of outflows, motivating deep, spatially-extended spectroscopic observations.
The vast majority of Type II supernovae (SNe) are produced by red supergiants (RSGs), but SN 1987A revealed that blue supergiants (BSGs) can produce members of this class as well, albeit with some peculiar properties. This best studied event revoluti onized our understanding of SNe, and linking it to the bulk of Type II events is essential. We present here optical photometry and spectroscopy gathered for SN 2000cb, which is clearly not a standard Type II SN and yet is not a SN 1987A analog. The light curve of SN 2000cb is reminiscent of that of SN 1987A in shape, with a slow rise to a late optical peak, but on substantially different time scales. Spectroscopically, SN 2000cb resembles a normal SN II but with ejecta velocities that far exceed those measured for SN 1987A or normal SNe II, above 18000 km/s for H-alpha at early times. The red colours, high velocities, late photometric peak, and our modeling of this object all point toward a scenario involving the high-energy explosion of a small-radius star, most likely a BSG, producing 0.1 solar masses of Ni-56. Adding a similar object to the sample, SN 2005ci, we derive a rate of about 2% of the core-collapse rate for this loosely defined class of BSG explosions.
From the set of nearly 500 spectroscopically confirmed type~Ia supernovae and around 10,000 unconfirmed candidates from SDSS-II, we select a subset of 108 confirmed SNe Ia with well-observed early-time light curves to search for signatures from shock interaction of the supernova with a companion star. No evidence for shock emission is seen; however, the cadence and photometric noise could hide a weak shock signal. We simulate shocked light curves using SN Ia templates and a simple, Gaussian shock model to emulate the noise properties of the SDSS-II sample and estimate the detectability of the shock interaction signal as a function of shock amplitude, shock width, and shock fraction. We find no direct evidence for shock interaction in the rest-frame $B$-band, but place an upper limit on the shock amplitude at 9% of supernova peak flux ($M_B > -16.6$ mag). If the single degenerate channel dominates type~Ia progenitors, this result constrains the companion stars to be less than about 6 $M_{odot}$ on the main sequence, and strongly disfavors red giant companions.
During the early evolution of an AM CVn system, helium is accreted onto the surface of a white dwarf under conditions suitable for unstable thermonuclear ignition. The turbulent motions induced by the convective burning phase in the He envelope becom e strong enough to influence the propagation of burning fronts and may result in the onset of a detonation. Such an outcome would yield radioactive isotopes and a faint rapidly rising thermonuclear .Ia supernova. In this paper, we present hydrodynamic explosion models and observable outcomes of these He shell detonations for a range of initial core and envelope masses. The peak UVOIR bolometric luminosities range by a factor of 10 (from 5e41 - 5e42 erg/s), and the R-band peak varies from M_R,peak = -15 to -18. The rise times in all bands are very rapid (<10 d), but the decline rate is slower in the red than the blue due to a secondary near-IR brightening. The nucleosynthesis primarily yields heavy alpha-chain elements (40Ca through 56Ni) and unburnt He. Thus, the spectra around peak light lack signs of intermediate mass elements and are dominated by CaII and TiII features, with the caveat that our radiative transfer code does not include the non-thermal effects necessary to produce He features.
We describe a three-dimensional simulation of a $1 M_{odot}$ solar-type star approaching a $10^{6} M_{odot}$ black hole on a parabolic orbit with a pericenter distance well within the tidal radius. While falling towards the black hole, the star is no t only stretched along the orbital direction but even more severely compressed at right angles to the orbit. The overbearing degree of compression achieved shortly after pericenter leads to the production of strong shocks which largely homogenize the temperature profile of the star, resulting in surface temperatures comparable to the initial temperature of the stars core. This phenomenon, which precedes the fallback accretion phase, gives rise to a unique double-peaked X-ray signature that, if detected, may be one of the few observable diagnostics of how stars behave under the influence of strong gravitational fields. If $sim 10^{6} M_{odot}$ black holes were prevalent in small or even dwarf galaxies, the nearest of such flares may be detectable by EXIST from no further away than the Virgo Cluster.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا