ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, $U(1)_{ u}$, for all new light fermionic states. Anomaly cancellations mandate the existence of several new fermion fields with nontrivial $U(1)_{ u}$ charges. We develop a concrete model of this type, for which we show that (i) some fermions remain massless after $U(1)_{ u}$ breaking -- similar to SM neutrinos -- and (ii) accidental global symmetries translate into stable massive particles -- similar to SM protons. These ingredients provide a solution to the dark matter and neutrino mass puzzles assuming one also postulates the existence of heavy degrees of freedom that act as mediators between the two sectors. The neutrino mass mechanism described here leads to parametrically small Dirac neutrino masses, and the model also requires the existence of at least four Dirac sterile neutrinos. Finally, we describe a general technique to write down chiral-fermions-only models that are at least anomaly-free under a $U(1)$ gauge symmetry.
We explore, mostly using data from solar neutrino experiments, the hypothesis that the neutrino mass eigenstates are unstable. We find that, by combining $^8$B solar neutrino data with those on $^7$Be and lower-energy solar neutrinos, one obtains a m ostly model-independent bound on both the $ u_1$ and $ u_2$ lifetimes. We comment on whether a nonzero neutrino decay width can improve the compatibility of the solar neutrino data with the massive neutrino hypothesis.
Neutrino propagation in space-time is not constrained to be unitary if very light states - lighter than the active neutrinos - exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and oscillation parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.
With the discovery of a particle that seems rather consistent with the minimal Standard Model Higgs boson, attention turns to questions of naturalness, fine-tuning, and what they imply for physics beyond the Standard Model and its discovery prospects at run II of the LHC. In this article we revisit the issue of naturalness, discussing some implicit assumptions that underly some of the most common statements, which tend to assign physical significance to certain regularization procedures. Vague arguments concerning fine-tuning can lead to conclusions that are too strong and perhaps not as generic as one would hope. Instead, we explore a more pragmatic definition of the hierarchy problem that does not rely on peeking beyond the murky boundaries of quantum field theory: we investigate the fine-tuning of the electroweak scale associated with thresholds from heavy particles, which is both calculable and dependent on the nature of the would-be ultraviolet completion of the Standard Model. We discuss different manifestations of new high-energy scales that are favored by experimental hints for new physics with an eye toward making use of fine-tuning in order to determine natural regions of the new physics parameter spaces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا