ترغب بنشر مسار تعليمي؟ اضغط هنا

We present detailed results from a recent microscopic theory of extremely correlated Fermi liquids, applied to the t-J model in two dimensions. We use typical sets of band parameters relevant to the cuprate superconductors. The second order theory in the parameter lambda is argued to be quantitatively valid in the overdoped regime for 0 < n < 0.75 (n is the particle density). The calculation involves the self consistent solution of equations for an auxiliary Fermi liquid type Greens function and an adaptive spectral weight, or caparison factor, described in recent papers by Shastry (Refs. (1) and (5)). We present the numerical results at low as well as high T at various low to intermediate densities in the normal phase with emphasis placed on features that are experimentally accessible. We display the momentum space occupation function m(k), various energy dispersions locating the peaks of spectral functions, the optical conductivity, relaxation rates for quasiparticles, and the electronic spectral functions along various directions in the Brillouin zone, and with typical additional elastic scattering. The line-shapes have an asymmetric shape and a broad background that is seen in experiments near and beyond optimal hole doping, and validate approximate recent rece
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا