ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that the Big Bang Observer (BBO), a proposed space-based gravitational-wave (GW) detector, would provide ultra-precise measurements of cosmological parameters. By detecting ~300,000 compact-star binaries, and utilizing them as standard sirens , BBO would determine the Hubble constant to 0.1%, and the dark energy parameters w_0 and w_a to ~0.01 and 0.1,resp. BBOs dark-energy figure-of-merit would be approximately an order of magnitude better than all other proposed dark energy missions. To date, BBO has been designed with the primary goal of searching for gravitational waves from inflation. To observe this inflationary background, BBO would first have to detect and subtract out ~300,000 merging compact-star binaries, out to z~5. It is precisely this foreground which would enable high-precision cosmology. BBO would determine the luminosity distance to each binary to ~percent accuracy. BBOs angular resolution would be sufficient to uniquely identify the host galaxy for most binaries; a coordinated optical/infrared observing campaign could obtain the redshifts. Combining the GW-derived distances and EM-derived redshifts for such a large sample of objects leads to extraordinarily tight constraints on cosmological parameters. Such ``standard siren measurements of cosmology avoid many of the systematic errors associated with other techniques. We also show that BBO would be an exceptionally powerful gravitational lensing mission, and we briefly discuss other astronomical uses of BBO.
116 - Joshua S. Bloom 2009
It is widely expected that the coming decade will witness the first direct detection of gravitational waves (GWs). The ground-based LIGO and Virgo GW observatories are being upgraded to advanced sensitivity, and are expected to observe a significant binary merger rate. The launch of The Laser Interferometer Space Antenna (LISA) would extend the GW window to low frequencies, opening new vistas on dynamical processes involving massive (M >~ 10^5 M_Sun) black holes. GW events are likely to be accompanied by electromagnetic (EM) counterparts and, since information carried electromagnetically is complementary to that carried gravitationally, a great deal can be learned about an event and its environment if it becomes possible to measure both forms of radiation in concert. Measurements of this kind will mark the dawn of trans-spectral astrophysics, bridging two distinct spectral bands of information. The aim of this whitepaper is to articulate future directions in both theory and observation that are likely to impact broad astrophysical inquiries of general interest. What will EM observations reflect on the nature and diversity of GW sources? Can GW sources be exploited as complementary probes of cosmology? What cross-facility coordination will expand the science returns of gravitational and electromagnetic observations?
The gravitational lensing distortion of distant sources by the large-scale distribution of matter in the Universe has been extensively studied. In contrast, very little is known about the effects due to the large-scale distribution of dark energy. We discuss the use of Type Ia supernovae as probes of the spatial inhomogeneity and anisotropy of dark energy. We show that a shallow, almost all-sky survey can limit rms dark energy fluctuations at the horizon scale down to a fractional energy density of ~10^-4
199 - Devdeep Sarkar 2008
The gravitational magnification and demagnification of Type Ia supernovae (SNe) modify their positions on the Hubble diagram, shifting the distance estimates from the underlying luminosity-distance relation. This can introduce a systematic uncertaint y in the dark energy equation of state (EOS) estimated from SNe, although this systematic is expected to average away for sufficiently large data sets. Using mock SN samples over the redshift range $0 < z leq 1.7$ we quantify the lensing bias. We find that the bias on the dark energy EOS is less than half a percent for large datasets ($gtrsim$ 2,000 SNe). However, if highly magnified events (SNe deviating by more than 2.5$sigma$) are systematically removed from the analysis, the bias increases to $sim$ 0.8%. Given that the EOS parameters measured from such a sample have a 1$sigma$ uncertainty of 10%, the systematic bias related to lensing in SN data out to $z sim 1.7$ can be safely ignored in future cosmological measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا