ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-high precision cosmology from gravitational waves

149   0   0.0 ( 0 )
 نشر من قبل Curt Cutler
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the Big Bang Observer (BBO), a proposed space-based gravitational-wave (GW) detector, would provide ultra-precise measurements of cosmological parameters. By detecting ~300,000 compact-star binaries, and utilizing them as standard sirens, BBO would determine the Hubble constant to 0.1%, and the dark energy parameters w_0 and w_a to ~0.01 and 0.1,resp. BBOs dark-energy figure-of-merit would be approximately an order of magnitude better than all other proposed dark energy missions. To date, BBO has been designed with the primary goal of searching for gravitational waves from inflation. To observe this inflationary background, BBO would first have to detect and subtract out ~300,000 merging compact-star binaries, out to z~5. It is precisely this foreground which would enable high-precision cosmology. BBO would determine the luminosity distance to each binary to ~percent accuracy. BBOs angular resolution would be sufficient to uniquely identify the host galaxy for most binaries; a coordinated optical/infrared observing campaign could obtain the redshifts. Combining the GW-derived distances and EM-derived redshifts for such a large sample of objects leads to extraordinarily tight constraints on cosmological parameters. Such ``standard siren measurements of cosmology avoid many of the systematic errors associated with other techniques. We also show that BBO would be an exceptionally powerful gravitational lensing mission, and we briefly discuss other astronomical uses of BBO.



قيم البحث

اقرأ أيضاً

82 - Haoran Di , Yungui Gong 2017
The next generation of space-borne gravitational wave detectors may detect gravitational waves from extreme mass-ratio inspirals with primordial black holes. To produce primordial black holes which contribute a non-negligible abundance of dark matter and are consistent with the observations, a large enhancement in the primordial curvature power spectrum is needed. For a single field slow-roll inflation, the enhancement requires a very flat potential for the inflaton, and this will increase the number of $e$-folds. To avoid the problem, an ultra-slow-roll inflation at the near inflection point is required. We elaborate the conditions to successfully produce primordial black hole dark matter from single field inflation and propose a toy model with polynomial potential to realize the big enhancement of the curvature power spectrum at small scales while maintaining the consistency with the observations at large scales. The power spectrum for the second order gravitational waves generated by the large density perturbations at small scales is consistent with the current pulsar timing array observations.
We investigate the generation of gravitational waves due to the gravitational instability of primordial density perturbations in an early matter-dominated era which could be detectable by experiments such as LIGO and LISA. We use relativistic perturb ation theory to give analytic estimates of the tensor perturbations generated at second order by linear density perturbations. We find that large enhancement factors with respect to the naive second-order estimate are possible due to the growth of density perturbations on sub-Hubble scales. However very large enhancement factors coincide with a breakdown of linear theory for density perturbations on small scales. To produce a primordial gravitational wave background that would be detectable with LIGO or LISA from density perturbations in the linear regime requires primordial comoving curvature perturbations on small scales of order 0.02 for Advanced LIGO or 0.005 for LISA, otherwise numerical calculations of the non-linear evolution on sub-Hubble scales are required.
We calculate the production of the gravitational waves from a double inflation model with lattice simulations. Between the two inflationary stages, gravitational waves with a characteristic frequency are produced by fluctuations of the scalar fields enhanced through parametric resonance. The wavelength of the produced gravitational waves gets extra redshift during the second inflationary stage and it can be in the observable range for the direct gravitational wave detectors. It is found that there is a possibility for the produced gravitational waves to be detected in the planned experiments.
We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic en ergy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.
We present three-dimensional direct numerical simulations of the production of magnetic fields and gravitational waves (GWs) in the early Universe during a low energy scale matter-dominated post-inflationary reheating era, and during the early subseq uent radiative era, which is strongly turbulent. The parameters of the model are determined such that it avoids a number of known physical problems and produces magnetic energy densities between 0.2% and 2% of the critical energy density at the end of reheating. During the subsequent development of a turbulent magnetohydrodynamic cascade, magnetic fields and GWs develop a spectrum that extends to higher frequencies in the millihertz (nanohertz) range for models with reheating temperatures of around 100 GeV (150 MeV) at the beginning of the radiation-dominated era. However, even though the turbulent cascade is fully developed, the GW spectrum shows a sharp drop for frequencies above the peak value. This suggests that the turbulence is less efficient in driving GWs than previously thought. The peaks of the resulting GW spectra may well be in the range accessible to space interferometers, pulsar timing arrays, and other facilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا