ترغب بنشر مسار تعليمي؟ اضغط هنا

We present deep HST/STIS coronagraphic images of the Beta Pic debris disk obtained at two epochs separated by 15 years. The new images and the re-reduction of the 1997 data provide the most sensitive and detailed views of the disk at optical waveleng ths as well as the yet smallest inner working angle optical coronagraphic image of the disk. Our observations characterize the large-scale and inner-disk asymmetries and we identify multiple breaks in the disk radial surface brightness profile. We study in detail the radial and vertical disk structure and show that the disk is warped. We explore the disk at the location of the Beta Pic b super-jupiter and find that the disk surface brightness slope is continuous between 0.5 and 2.0 arcsec, arguing for no change at the separations where Beta Pic b orbits. The two epoch images constrain the disk surface brightness evolution on orbital and radiation pressure blow-out timescales. We place an upper limit of 3% on the disk surface brightness change between 3-5 arcsec, including the locations of the disk warp, and the CO and dust clumps. We discuss the new observations in the context of high-resolution multi-wavelength images and divide the disk asymmetries in two groups: axisymmetric and non-axisymmetric. The axisymmetric structures (warp, large-scale butterfly, etc.) are consistent with disk structure models that include interactions of a planetesimal belt and a non-coplanar giant planet. The non-axisymmetric features, however, require a different explanation.
We present results from the Weather on Other Worlds Spitzer Exploration Science program to investigate photometric variability in L and T dwarfs, usually attributed to patchy clouds. We surveyed 44 L3-T8 dwarfs, spanning a range of $J-K_s$ colors and surface gravities. We find that 14/23 (61%; 95% confidence interval: 41%-78%) of our single L3-L9.5 dwarfs are variable with peak-to-peak amplitudes between 0.2% and 1.5%, and 5/16 (31%; 95% confidence interval: 14%-56%) of our single T0-T8 dwarfs are variable with amplitudes between 0.8% and 4.6%. After correcting for sensitivity, we find that 80% (95% confidence interval: 53%-100%) of L dwarfs vary by >0.2%, and 36% (95% confidence interval: 19%-52%) of T dwarfs vary by >0.4%. Given viewing geometry considerations, we conclude that photospheric heterogeneities causing >0.2% 3-5-micron flux variations are present on virtually all L dwarfs, and probably on most T dwarfs. A third of L dwarf variables show irregular light curves, indicating that L dwarfs may have multiple spots that evolve over a single rotation. Also, approximately a third of the periodicities are on time scales >10 h, suggesting that slowly-rotating brown dwarfs may be common. We observe an increase in the maximum amplitudes over the entire spectral type range, revealing a potential for greater temperature contrasts in T dwarfs than in L dwarfs. We find a tentative association (92% confidence) between low surface gravity and high-amplitude variability among L3-L5.5 dwarfs. Although we can not confirm whether lower gravity is also correlated with a higher incidence of variables, the result is promising for the characterization of directly imaged young extrasolar planets through variability.
We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rot ation-modulated flux variations between 1.1 $mu$m and 1.7 $mu$m. We find that the water absorption bands of the two L5 dwarfs at 1.15 $mu$m and 1.4 $mu$m vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 $mu$m displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers - the driver of the variability - must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.
In February 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its 100-night campaign from the Large Binocular Telescope atop Mount Graham in Arizona. LEECH nearly complements other high-contrast planet imaging efforts by observing sta rs in L band (3.8 microns) as opposed to the shorter wavelength near-infrared bands (1-2.3 microns). This part of the spectrum offers deeper mass sensitivity for intermediate age (several hundred Myr-old) systems, since their Jovian-mass planets radiate predominantly in the mid-infrared. In this proceedings, we present the science goals for LEECH and a preliminary contrast curve from some early data.
Most directly imaged giant exoplanets are fainter than brown dwarfs with similar spectra. To explain their relative underluminosity unusually cloudy atmospheres have been proposed. However, with multiple parameters varying between any two objects, it remained difficult to observationally test this idea. We present a new method, sensitive time-resolved Hubble Space Telescope near-infrared spectroscopy, to study two rotating L/T transition brown dwarfs (2M2139 and SIMP0136). The observations provide spatially and spectrally resolved mapping of the cloud decks of the brown dwarfs. The data allow the study of cloud structure variations while other parameters are unchanged. We find that both brown dwarfs display variations of identical nature: J- and H-band brightness variations with minimal color and spectral changes. Our light curve models show that even the simplest surface brightness distributions require at least three elliptical spots. We show that for each source the spectral changes can be reproduced with a linear combination of only two different spectra, i.e. the entire surface is covered by two distinct types of regions. Modeling the color changes and spectral variations together reveal patchy cloud covers consisting of a spatially heterogenous mix of low-brightness, low-temperature thick clouds and brighter, thin and warm clouds. We show that the same thick cloud patches seen in our varying brown dwarf targets, if extended to the entire photosphere, predict near-infrared colors/magnitudes matching the range occupied by the directly imaged exoplanets that are cooler and less luminous than brown dwarfs with similar spectral types. This supports the models in which thick clouds are responsible for the near infrared properties of these underluminous exoplanets.
We report the detection in Ks-band of the secondary eclipse of the hot Jupiter CoRoT-1b, from time series photometry with the ARC 3.5-m telescope at Apache Point Observatory. The eclipse shows a depth of 0.336+/-0.042 percent and is centered at phase 0.5022 (+0.0023,-0.0027), consistent with a zero eccentricity orbit ecos{omega} = 0.0035 (+0.0036,-0.0042). We perform the first optical to near-infrared multi-band photometric analysis of an exoplanets atmosphere and constrain the reflected and thermal emissions by combining our result with the recent 0.6, 0.71, and 2.09 micron secondary eclipse detections by Snellen et al. (2009), Gillon et al. (2009), and Alonso et al. (2009a). Comparing the multi-wavelength detections to state-of-the-art radiative-convective chemical-equilibrium atmosphere models, we find the near-infrared fluxes difficult to reproduce. The closest blackbody-based and physical models provide the following atmosphere parameters: a temperature T = 2454 (+84,-170) K, a very low Bond albedo A_B = 0.000 (+0.087,-0.000), and an energy redistribution parameter P_n = 0.1, indicating a small but nonzero amount of heat transfer from the day- to night-side. The best physical model suggests a thermal inversion layer with an extra optical absorber of opacity kappa_e =0.05cm^2g^-1, placed near the 0.1-bar atmospheric pressure level. This inversion layer is located ten times deeper in the atmosphere than the absorbers used in models to fit mid-infrared Spitzer detections of other irradiated hot Jupiters.
36 - Markus Kasper 2007
The paper presents results from a small survey of 22 young, nearby stars that was designed to detect substellar companions and ultimately giant extrasolar planets down to Jupiter masses. The targets are members of the Tucana and Beta Pictoris moving groups apart from the somewhat older star HIP 71395 that has a radial velocity trend suggesting a massive planet in large orbit. The survey was carried out in the L-band using adaptive optics assisted imaging with NAOS-CONICA (NACO) at the VLT. The chosen observation wavelength is well suited to search for close companions around young stars and delivers unprecedented detection limits. The presented technique reaches some of the best sensitivities as of today and is currently the most sensitive method for the contrast limited detection of substellar companions that are cooler than about 1000K. The companion to 51 Eri, GJ 3305, was found to be a very close binary on an eccentric orbit. No substellar companions were found around the target stars, although the method permitted to detect companions down to a few Jupiter masses at orbital distances of typically 5 astronomical units. A planet with a mass >1 M_Jup at distances >5 AU around AU Mic can be excluded at the time of our observations. The absence of detected planets sets constraints on the frequency distribution and maximum orbital distance of giant exoplanets. For example, a radial distribution power law index of 0.2 in combination with a maximum orbital radius exceeding 30 AU can be rejected at a 90% confidence level.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا