ترغب بنشر مسار تعليمي؟ اضغط هنا

There are by now ten published detections of fast radio bursts (FRBs), single bright GHz-band millisecond pulses of unknown origin. Proposed explanations cover a broad range from exotic processes at cosmological distances to atmospheric and terrestri al sources. Loeb et al. have previously suggested that FRB sources could be nearby flare stars, and pointed out the presence of a W-UMa-type contact binary within the beam of one out of three FRB fields that they examined. Using time-domain optical photometry and spectroscopy, we now find possible flare stars in additional FRB fields, with one to three such cases among eight FRB fields studied. We evaluate the chance probabilities of these possible associations to be in the range 0.1% to 9%, depending on the input assumptions. Further, we re-analyze the probability that two FRBs recently discovered 3 years apart within the same radio beam are unrelated. Contrary to other claims, we conclude with 99% confidence that the two events are from the same repeating source. The different dispersion measures between the two bursts then rule out a cosmological origin for the dispersion measure, but are consistent with the flare-star scenario with a varying plasma blanket between bursts. Finally, we review some theoretical objections that have been raised against a local flare-star FRB origin, and show that they are incorrect.
Planetary Nebulae (PNe) are amongst the most spectacular objects produced by stellar evolution, but the exact identity of their progenitors has never been established for a large and homogeneous observational sample. We investigate the relationship b etween PNe and their stellar progenitors in the Large Magellanic Cloud (LMC) through the statistical comparison between a highly complete spectroscopic catalog of PNe and the spatially resolved age distribution of the underlying stellar populations. We find that most PN progenitors in the LMC have main-sequence lifetimes in a narrow range between 5 and 8 Gyr, which corresponds to masses between 1.2 and 1.0 M$_{odot}$, and produce PNe that last $26^{+6}_{-7}$~kyr on average. We tentatively detect a second population of PN progenitors, with main-sequence lifetimes between 35 and 800~Myr, i.e., masses between 8.2 and 2.1 M$_{odot}$, and average PN lifetimes of $11^{+6}_{-7}$ kyr. These two distinct and disjoint populations of progenitors strongly suggest the existence of at least two physically distinct formation channels for PNe. Our determination of PN lifetimes and progenitor masses has implications for the understanding of PNe in the context of stellar evolution models, and for the role that rotation, magnetic fields, and binarity can play in the shaping of PN morphologies.
189 - Dan Maoz , Filippo Mannucci , 2012
We derive the delay-time distribution (DTD) of type-Ia supernovae (SNe Ia) using a sample of 132 SNe Ia, discovered by the Sloan Digital Sky Survey II (SDSS2) among 66,000 galaxies with spectral-based star-formation histories (SFHs). To recover the b est-fit DTD, the SFH of every individual galaxy is compared, using Poisson statistics, to the number of SNe that it hosted (zero or one), based on the method introduced in Maoz et al. (2011). This SN sample differs from the SDSS2 SN Ia sample analyzed by Brandt et al. (2010), using a related, but different, DTD recovery method. Furthermore, we use a simulation-based SN detection-efficiency function, and we apply a number of important corrections to the galaxy SFHs and SN Ia visibility times. The DTD that we find has 4-sigma detections in all three of its time bins: prompt (t < 420 Myr), intermediate (0.4 < t < 2.4 Gyr), and delayed (t > 2.4 Gyr), indicating a continuous DTD, and it is among the most accurate and precise among recent DTD reconstructions. The best-fit power-law form to the recovered DTD is t^(-1.12+/-0.08), consistent with generic ~t^-1 predictions of SN Ia progenitor models based on the gravitational-wave induced mergers of binary white dwarfs. The time integrated number of SNe Ia per formed stellar mass is N_SN/M = 0.00130 +/- 0.00015 Msun^-1, or about 4% of the stars formed with initial masses in the 3-8 Msun range. This is lower than, but largely consistent with, several recent DTD estimates based on SN rates in galaxy clusters and in local-volume galaxies, and is higher than, but consistent with N_SN/M estimated by comparing volumetric SN Ia rates to cosmic SFH.
131 - Carles Badenes , Dan Maoz 2012
We use multi-epoch spectroscopy of about 4000 white dwarfs in the Sloan Digital Sky Survey to constrain the properties of the Galactic population of binary white dwarf systems and calculate their merger rate. With a Monte Carlo code, we model the dis tribution of DRVmax, the maximum radial velocity shift between exposures of the same star, as a function of the binary fraction within 0.05 AU, fbin, and the power-law index in the separation distribution at the end of the common envelope phase, alpha. Although there is some degeneracy between fbin and alpha, the the fifteen high DRVmax systems that we find constrain the combination of these parameters, which determines a white dwarf merger rate per unit stellar mass of 1.4(+3.4,-1.0)e-13 /yr/Msun (1-sigma limits). This is remarkably similar to the measured rate of Type Ia supernovae per unit stellar mass in Milky-Way-like Sbc galaxies. The rate of super-Chandrasekhar mergers is only 1.0(+1.6,-0.6)e-14 /yr/Msun. We conclude that there are not enough close binary white dwarf systems to reproduce the observed Type Ia SN rate in the classic double degenerate super-Chandrasekhar scenario. On the other hand, if sub-Chandrasekhar mergers can lead to Type Ia SNe, as recently suggested by some studies, they could make a major contribution to the overall Type Ia SN rate. Although unlikely, we cannot rule out contamination of our sample by M-dwarf binaries or non-Gaussian errors. These issues will be clarified in the near future by completing the follow-up of all 15 high DRVmax systems.
Supernova (SN) rates are potentially powerful diagnostics of metal enrichment and SN physics, particularly in galaxy clusters with their deep, metal-retaining potentials and relatively simple star-formation histories. We have carried out a survey for supernovae (SNe) in galaxy clusters, at a redshift range 0.5<z<0.9, using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. We reimaged a sample of 15 clusters that were previously imaged by ACS, thus obtaining two to three epochs per cluster, in which we discovered five likely cluster SNe, six possible cluster SNe Ia, two hostless SN candidates, and several background and foreground events. Keck spectra of the host galaxies were obtained to establish cluster membership. We conducted detailed efficiency simulations, and measured the stellar luminosities of the clusters using Subaru images. We derive a cluster SN rate of 0.35 SNuB +0.17/-0.12 (statistical) pm0.13 (classification) pm0.01 (systematic) [where SNuB = SNe (100 yr 10^10 L_B_sun)^-1] and 0.112 SNuM +0.055/-0.039 (statistical) pm0.042 (classification) pm0.005 (systematic) [where SNuM = SNe (100 yr 10^10 M_sun)^-1]. As in previous measurements of cluster SN rates, the uncertainties are dominated by small-number statistics. The SN rate in this redshift bin is consistent with the SN rate in clusters at lower redshifts (to within the uncertainties), and shows that there is, at most, only a slight increase of cluster SN rate with increasing redshift. The low and fairly constant SN Ia rate out to z~1 implies that the bulk of the iron mass in clusters was already in place by z~1. The recently observed doubling of iron abundances in the intracluster medium between z=1 and 0, if real, is likely the result of redistribution of existing iron, rather than new production of iron.
151 - Carles Badenes , Dan Maoz , 2010
The physical sizes of supernova remnants (SNRs) in a number of nearby galaxies follow an approximately linear cumulative distribution, contrary to what is expected for decelerating shock fronts. This has been attributed to selection effects, or to a majority of SNRs propagating in free expansion, at constant velocity, into a tenuous ambient medium. We compile a list of 77 known SNRs in the Magellanic Clouds (MCs), and argue that they are a fairly complete record of the SNe that have exploded over the last ~20kyr, with most now in the adiabatic, Sedov phase of their expansions. The roughly linear cumulative size distribution (uniform in a differential distribution) can result from the combination of a deceleration during this phase, a transition to a radiation-loss-dominated phase at a radius that depends on the local gas density, and a distribution of ambient densities varying roughly as rho^{-1}. This explanation is supported by the observed -1 power-law distributions of three independent tracers of density: HI column density, Halpha surface brightness, and star formation rate from resolved stellar populations. In this picture, the observed cutoff at r~30 pc in the SNR size distribution is due to a minimum in the mean ambient gas density in the regions where supernovae (SNe) explode. We show that M33 has a SNR size distribution similar to that of the MCs, suggesting these features, and their explanation, may be universal. In a companion paper (Maoz & Badenes 2010), we use our sample of SNRs as an effective SN survey to calculate the SN rate and delay time distribution in the MCs. The hypothesis that most SNRs are in free expansion, rather than in the Sedov phase of their evolution, would result in SN rates that are in strong conflict with independent measurements, and with basic stellar evolution theory.
30 - Avishay Gal-Yam 2007
We describe the Wise Observatory Optical Transient Search (WOOTS), a survey for supernovae (SNe) and other variable and transient objects in the fields of redshift 0.06-0.2 Abell galaxy clusters. We present the survey design and data-analysis procedu res, and our object detection and follow-up strategies. We have obtained follow-up spectroscopy for all viable SN candidates, and present the resulting SN sample here. Out of the 12 SNe we have discovered, seven are associated with our target clusters while five are foreground or background field events. All but one of the SNe (a foreground field event) are Type Ia SNe. Our non-cluster SN sample is uniquely complete, since all SN candidates have been either spectroscopically confirmed or ruled out. This allows us to estimate that flux-limited surveys similar to WOOTS would be dominated (~80%) by SNe Ia. Our spectroscopic follow-up observations also elucidate the difficulty in distinguishing active galactic nuclei from SNe. In separate papers we use the WOOTS sample to derive the SN rate in clusters for this redshift range, and to measure the fraction of intergalactic cluster SNe. We also briefly report here on some quasars and asteroids discovered by WOOTS.
Large samples of high-redshift supernovae (SNe) are potentially powerful probes of cosmic star formation, metal enrichment, and SN physics. We present initial results from a new deep SN survey, based on re-imaging in the R, i, z bands, of the 0.25 de g2 Subaru Deep Field (SDF), with the 8.2-m Subaru telescope and Suprime-Cam. In a single new epoch consisting of two nights of observations, we have discovered 33 candidate SNe, down to a z-band magnitude of 26.3 (AB). We have measured the photometric redshifts of the SN host galaxies, obtained Keck spectroscopic redshifts for 17 of the host galaxies, and classified the SNe using the Bayesian photometric algorithm of Poznanski et al. (2007) that relies on template matching. After correcting for biases in the classification, 55% of our sample consists of Type Ia supernovae and 45% of core-collapse SNe. The redshift distribution of the SNe Ia reaches z ~ 1.6, with a median of z ~ 1.2. The core-collapse SNe reach z ~ 1.0, with a median of z ~ 0.5. Our SN sample is comparable to the Hubble Space Telescope/GOODS sample both in size and redshift range. The redshift distributions of the SNe in the SDF and in GOODS are consistent, but there is a trend (which requires confirmation using a larger sample) for more high-z SNe Ia in the SDF. This trend is also apparent when comparing the SN Ia rates we derive to those based on GOODS data. Our results suggest a fairly constant rate at high redshift that could be tracking the star-formation rate. Additional epochs on this field, already being obtained, will enlarge our SN sample to the hundreds, and determine whether or not there is a decline in the SN Ia rate at z >~ 1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا