ترغب بنشر مسار تعليمي؟ اضغط هنا

The Merger Rate of Binary White Dwarfs in the Galactic Disk

193   0   0.0 ( 0 )
 نشر من قبل Carles Badenes
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use multi-epoch spectroscopy of about 4000 white dwarfs in the Sloan Digital Sky Survey to constrain the properties of the Galactic population of binary white dwarf systems and calculate their merger rate. With a Monte Carlo code, we model the distribution of DRVmax, the maximum radial velocity shift between exposures of the same star, as a function of the binary fraction within 0.05 AU, fbin, and the power-law index in the separation distribution at the end of the common envelope phase, alpha. Although there is some degeneracy between fbin and alpha, the the fifteen high DRVmax systems that we find constrain the combination of these parameters, which determines a white dwarf merger rate per unit stellar mass of 1.4(+3.4,-1.0)e-13 /yr/Msun (1-sigma limits). This is remarkably similar to the measured rate of Type Ia supernovae per unit stellar mass in Milky-Way-like Sbc galaxies. The rate of super-Chandrasekhar mergers is only 1.0(+1.6,-0.6)e-14 /yr/Msun. We conclude that there are not enough close binary white dwarf systems to reproduce the observed Type Ia SN rate in the classic double degenerate super-Chandrasekhar scenario. On the other hand, if sub-Chandrasekhar mergers can lead to Type Ia SNe, as recently suggested by some studies, they could make a major contribution to the overall Type Ia SN rate. Although unlikely, we cannot rule out contamination of our sample by M-dwarf binaries or non-Gaussian errors. These issues will be clarified in the near future by completing the follow-up of all 15 high DRVmax systems.



قيم البحث

اقرأ أيضاً

From a sample of spectra of 439 white dwarfs (WDs) from the ESO-VLT Supernova-Ia Progenitor surveY (SPY), we measure the maximal changes in radial-velocity (DRVmax) between epochs (generally two epochs, separated by up to 470d), and model the observe d DRVmax statistics via Monte-Carlo simulations, to constrain the population characteristics of double WDs (DWDs). The DWD fraction among WDs is fbin=0.100+/-0.020 (1-sigma, random) +0.02 (systematic), in the separation range ~<4AU within which the data are sensitive to binarity. Assuming the distribution of binary separation, a, is a power-law, dN/da ~ a^alpha, at the end of the last common-envelope phase and the start of solely gravitational-wave-driven binary evolution, the constraint by the data is alpha=-1.3+/-0.2 (1-sigma) +/-0.2 (systematic). If these parameters extend to small separations, the implied Galactic WD merger rate per unit stellar mass is R_merge=(1-80)e-13 /yr/Msun (2-sigma), with a likelihood-weighted mean of R_merge=(7+/-2)e-13 /yr/Msun (1-sigma). The Milky Ways specific Type-Ia supernova (SN Ia) rate is likely R_Ia~1.1e-13 /yr/Msun and therefore, in terms of rates, a possibly small fraction of all merging DWDs (e.g. those with massive-enough primary WDs) could suffice to produce most or all SNe Ia.
We obtain new and precise information on the double white dwarf (DWD) population and on its gravitational-wave-driven merger rate, by combining the constraints on the DWD population from two previous radial-velocity-variation studies: One based on a sample of white dwarfs (WDs) from the Sloan Digital Sky Survey (SDSS, which with its low spectral resolution probes systems at separations a<0.05 au), and one based on the ESO-VLT Supernova-Ia Progenitor surveY (SPY, which, with high spectral resolution, is sensitive to a<4 au). From a joint likelihood analysis, the DWD fraction among WDs is fbin=0.095+/-0.020 (1-sigma, random) +0.010 (systematic) in the separation range ~<4 au. The index of a power-law distribution of initial WD separations (at the start of solely gravitational-wave-driven binary evolution), N(a)da ~ a^alpha da, is alpha=-1.30+/-0.15 (1-sigma) +0.05 (systematic). The Galactic WD merger rate per WD is R_merge=(9.7+/-1.1)e-12 /yr. Integrated over the Galaxy lifetime, this implies that 8.5-11 per cent of all WDs ever formed have merged with another WD. If most DWD mergers end as more-massive WDs, then some 10 per cent of WDs are DWD-merger products, consistent with the observed fraction of WDs in a high-mass bump in the WD mass function. The DWD merger rate is 4.5-7 times the Milky Ways specific Type-Ia supernova (SN Ia) rate. If most SN Ia explosions stem from the mergers of some DWDs (say, those with massive-enough binary components) then ~15 per cent of all WD mergers must lead to a SN Ia.
133 - Ralf Napiwotzki 2009
The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial-mass-function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of Galactic structure. This model will be used to estimate the space densities of thin disc, thick disc and halo white dwarfs and their contribution to the baryonic mass budget of the Milky Way. One result of this investigation is that white dwarfs of the halo population contribute a large fraction of the Galactic white dwarf number count, but they are not responsible for the lions share of stellar mass in the Milky Way. Another important result is the substantial contribution of the - often neglected - population of thick disc white dwarfs. Misclassification of thick disc white dwarfs is responsible for overestimates of the halo population in previous investigations.
The Double Pulsar (PSR J0737-3039) is the only neutron star-neutron star (NS-NS) binary in which both NSs have been detectable as radio pulsars. The Double Pulsar has been assumed to dominate the Galactic NS-NS binary merger rate R_g among all known systems, solely based on the properties of the first-born, recycled pulsar (PSR J0737-3039A, or A) with an assumption for the beaming correction factor of 6. In this work, we carefully correct observational biases for the second-born, non-recycled pulsar (PSR J0737-0737B, or B) and estimate the contribution from the Double Pulsar on R_g using constraints available from both A and B. Observational constraints from the B pulsar favour a small beaming correction factor for A (~2), which is consistent with a bipolar model. Considering known NS-NS binaries with the best observational constraints, including both A and B, we obtain R_g=21_{-14}^{+28} per Myr at 95 per cent confidence from our reference model. We expect the detection rate of gravitational waves from NS-NS inspirals for the advanced ground-based gravitational-wave detectors is to be 8^{+10}_{-5} per yr at 95 per cent confidence. Within several years, gravitational-wave detections relevant to NS-NS inspirals will provide us useful information to improve pulsar population models.
Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a syst ematic excess of red objects that cannot be explained by the theoretical models of single carbon-oxygen white dwarfs of the appropriate masses. Here we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-disk bulge stars is negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا