ترغب بنشر مسار تعليمي؟ اضغط هنا

Among the several strategies for indirect searches of dark matter, one very promising one is to look for the gamma-rays from decaying dark matter. Here we use the most up-to-date upper bounds on the gamma-ray flux from $10^5$ to $10^{11}$ GeV, obtain ed from CASA-MIA, KASCADE, KASCADE-Grande, Pierre Auger Observatory, and Telescope Array. We obtain global limits on dark matter lifetime in the range of masses $m_mathrm{DM}=[10^7-10^{15}]~mathrm{GeV}$. We provide the bounds for a set of decay channels chosen as representatives. The constraints derived here are new and cover a region of the parameter space not yet explored. We compare our results with the projected constraints from future neutrino telescopes, in order to quantify the improvement that will be obtained by the complementary high-energy neutrino searches.
Astrophysical neutrino fluxes are often modeled as power laws of the energy. This is reasonable in the case of hadronic sources, but it does not capture the behavior in photohadronic sources, where the spectrum depends on the properties of the target photons on which protons collide. This limits the possibility of a unified treatment of different sources. In order to overcome this difficulty, we model the target photons by a blackbody spectrum. This model is sufficiently flexible to reproduce neutrino fluxes from known photohadronic sources; we apply it to study the sensitivity of Dense Neutrino Arrays, Neutrino Telescopes and Neutrino Radio Arrays to photohadronic sources. We also classify the flavor composition of the neutrino spectrum in terms of the parameter space. We discuss the interplay with the experiments, studying the changes in the track-to-shower ratio induced by different flavor compositions, both within and outside the region of the Glashow resonance.
Among the information provided by high energy neutrinos, a promising possibility is to analyze the effects of a Violation of Equivalence Principle (VEP) on neutrino oscillations. We analyze the IceCube data on atmospheric neutrino fluxes under the as sumption of a VEP and obtain updated constraints on the parameter space with the benchmark choice that neutrinos with different masses couple with different strengths to the gravitational field. In this case we find that the VEP parameters times the local gravitational potential at Earth can be constrained at the level of $10^{-27}$. We show that the constraints from atmospheric neutrinos strongly depend on the assumption that the neutrino eigenstates interacting diagonally with the gravitational field coincide with the mass eigenstates, which is not a priori justified: this is particularly clear in the case that the basis of diagonal gravitational interaction coincide with the flavor basis, which cannot be constrained by the observation of atmospheric neutrinos. Finally, we quantitatively study the effect of a VEP on the flavor composition of the astrophysical neutrinos, stressing again the interplay with the basis in which the VEP is diagonal: we find that for some choices of such basis the flavor ratio measured by IceCube can significantly change.
The symmetry of the theory of relativity under diffeomorphisms strongly depends on the equivalence principle. Violation of Equivalence Principle (VEP) can be tested by looking for deviations from the standard framework of neutrino oscillations. In re cent works, it has been shown that strong constraints on the VEP parameter space can be placed by means of the atmospheric neutrinos observed by the IceCube neutrino telescope. In this paper, we focus on the KM3NeT neutrino telescope and perform a forecast analysis to assess its capacity to probe VEP. Most importantly, we examine the crucial role played by systematic uncertainties affecting the neutrino observations. We find that KM3NeT will constrain VEP parameters times the local gravitational potential at the level of $10^{-27}$. Due to the systematic-dominated regime, independent analyses from different neutrino telescopes are fundamental for robustly testing the equivalence principle.
Star-forming and starburst galaxies, which are well-known cosmic-rays reservoirs, are expected to emit gamma-rays and neutrinos predominantly via hadronic collisions. In this Letter, we analyze the 10-year Fermi-LAT spectral energy distributions of 1 3 nearby galaxies by means of a physical model which accounts for high-energy proton transport in starburst nuclei and includes the contribution of primary and secondary electrons. In particular, we test the hypothesis that the observed gamma-ray fluxes are mostly due to star-forming activity, in agreement with the available star formation rates coming from IR and UV observations. Through this observation-based approach, we determine the most-likely neutrino counterpart from star-forming and starburst galaxies and quantitatively assess the ability of current and upcoming neutrino telescopes to detect them as point-like sources. Remarkably, we find that the cores of the Small Magellanic Cloud and the Circinus galaxy are potentially observable by KM3NeT/ARCA with 6 years of observation. Moreover, most of the nearby galaxies are likely to be just a factor of a few below the KM3NeT and IceCube-Gen2 point-like sensitivities. After investigating the prospects for detection of gamma-rays above TeV energies from these sources, we conclude that the joint observations of high-energy neutrinos and gamma-rays with upcoming telescopes will be an objective test for our emission model and may provide compelling evidence of star-forming activity as a tracer of neutrino production.
We propose a new mechanism for baryogenesis, in which baryon asymmetry is generated by absorption of a new particle $X$ carrying baryon number onto Primordial Black Holes (PBHs). Due to CP violation of $X$ and $overline{X}$ scattering with the plasma surrounding PBHs, the two conjugate particles are differently absorbed by PBHs, leading to the production of an asymmetry in the $X$ sector. The production is halted by PBH evaporation, after which the asymmetry is transferred into the baryonic sector via $X$ decay. We show that this mechanism can produce the correct amount of asymmetry without violating the known constraints on PBHs concentration. Furthermore, we provide a systematic study of the parameter space, identifying the regions leading to the production of the correct baryon asymmetry.
The sources of IceCube neutrinos are as yet unknown. The multi-messenger observation of their emission in $gamma$-rays can be a guide to their identification, as exemplified by the case of TXS 0506+056. We suggest a new method of searching for $gamma $-rays with Imaging Air Cherenkov Telescopes from sources in coincidence with possible astrophysical neutrinos. We propose that searches of $gamma$-rays are extended, from the current practice of only a few days, to up to one month from a neutrino alert. We test this strategy on simulated sources modeled after the blazar emph{TXS 0506+056-like}, emitting neutrinos and $gamma$-rays via photohadronic interactions: the $gamma$-rays are subsequently reprocessed in the VHE range. Using MAGIC as a benchmark example, we show that current Cherenkov Telescopes should be able to detect$gamma$-ray counterparts to neutrino alerts with a rate of approximately one per year. It has been proposed that the high-energy diffuse neutrino flux can be explained by $sim$ 5% of all blazars flaring in neutrinos once every 10 years, with a neutrino luminosity similar to that of TXS 0506+056 during the 2014-2015 neutrino flare. The implementation of our strategy could lead, over a timescale of one or few years, either to the detection of this subclass of blazars contributing to the diffuse neutrino flux, or to a constraint on this model.
Among the information provided by high energy neutrinos, a promising possibility is to analyze the effects of a Violation of Equivalence Principle (VEP) on neutrino oscillations. We analyze the recently released IceCube data on atmospheric neutrino f luxes under the assumption of a VEP and obtain updated constraints on the parameter space with the benchmark choice that neutrinos with different masses couple with different strengths to the gravitational field. In this case we find that the VEP parameters times the local gravitational potential at Earth can be constrained at the level of $10^{-27}$. We show that the constraints from atmospheric neutrinos strongly depend on the assumption that the neutrino eigenstates interacting diagonally with the gravitational field coincide with the mass eigenstates, which is not textit{a priori} justified: this is particularly clear in the case that the basis of diagonal gravitational interaction coincide with the flavor basis, which cannot be constrained by the observation of atmospheric neutrinos. Finally, we quantitatively study the effect of a VEP on the flavor composition of the astrophysical neutrinos, stressing again the interplay with the basis in which the VEP is diagonal: we find that for some choices of such basis the flavor ratio measured by IceCube can significantly change.
We consider the effects of active-sterile secret neutrino interactions, mediated by a new pseudoscalar particle, on high- and ultra high-energy neutrino fluxes. In particular, we focus on the case of 3 active and 1 sterile neutrino coupled by a flavo r dependent interaction, extending the case of 1 active and 1 sterile neutrino we have recently examined. We find that, depending on the kind of interaction of sterile neutrino with the active sector, new regions of the parameter space for secret interactions are now allowed leading to interesting phenomenological implications on two benchmark fluxes we consider, namely an astrophysical power law flux, in the range below 100 PeV, and a cosmogenic flux, in the Ultrahigh energy range. First of all, the final active fluxes can present a measurable depletion observable in future experiments. Especially, in the case of only tau neutrino interacting, we find that the effects on the astrophysical power law flux can be so large to be already probed by the IceCube experiment. Moreover, we find intriguing features in the energy dependence of the flavor ratio.
Ultra High Energy cosmogenic neutrinos may represent a unique opportunity to unveil possible new physics interactions once restricted to the neutrino sector only. In the present paper we study the observable effects of a secret active-sterile interac tions, mediated by a pseudoscalar, on the expected flux of cosmogenic neutrinos. The results show that for masses of sterile neutrinos and pseudoscalars of hundreds MeV, necessary to evade cosmological, astrophysical and elementary particle constraints, the presence of such new interactions can significantly change the energy spectrum of cosmogenic neutrinos at Earth in the energy range from PeV to ZeV. Interestingly, the distortion of the spectrum results to be detectable at GRAND apparatus if the scalar mediator mass is around 250 MeV and the UHECRs are dominated by the proton component. Larger mediator masses or a chemical composition of UHECRs dominated by heavier nuclei would require much larger cosmic rays apparatus which might be available in future.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا