ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmogenic neutrino fluxes under the effect of active-sterile secret interactions

210   0   0.0 ( 0 )
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra High Energy cosmogenic neutrinos may represent a unique opportunity to unveil possible new physics interactions once restricted to the neutrino sector only. In the present paper we study the observable effects of a secret active-sterile interactions, mediated by a pseudoscalar, on the expected flux of cosmogenic neutrinos. The results show that for masses of sterile neutrinos and pseudoscalars of hundreds MeV, necessary to evade cosmological, astrophysical and elementary particle constraints, the presence of such new interactions can significantly change the energy spectrum of cosmogenic neutrinos at Earth in the energy range from PeV to ZeV. Interestingly, the distortion of the spectrum results to be detectable at GRAND apparatus if the scalar mediator mass is around 250 MeV and the UHECRs are dominated by the proton component. Larger mediator masses or a chemical composition of UHECRs dominated by heavier nuclei would require much larger cosmic rays apparatus which might be available in future.



قيم البحث

اقرأ أيضاً

Sterile neutrinos with mass in the eV-scale and large mixings of order $theta_0simeq 0.1$ could explain some anomalies found in short-baseline neutrino oscillation data. Here, we revisit a neutrino portal scenario in which eV-scale sterile neutrinos have self-interactions via a new gauge vector boson $phi$. Their production in the early Universe via mixing with active neutrinos can be suppressed by the induced effective potential in the sterile sector. We study how different cosmological observations can constrain this model, in terms of the mass of the new gauge boson, $M_phi$, and its coupling to sterile neutrinos, $g_s$. Then, we explore how to probe part of the allowed parameter space of this particular model with future observations of the diffuse supernova neutrino background by the Hyper-Kamiokande and DUNE detectors. For $M_phi sim 5-10$~keV and $g_s sim 10^{-4}-10^{-2}$, as allowed by cosmological constraints, we find that interactions of diffuse supernova neutrinos with relic sterile neutrinos on their way to the Earth would result in significant dips in the neutrino spectrum which would produce unique features in the event spectra observed in these detectors.
We consider the effects of active-sterile secret neutrino interactions, mediated by a new pseudoscalar particle, on high- and ultra high-energy neutrino fluxes. In particular, we focus on the case of 3 active and 1 sterile neutrino coupled by a flavo r dependent interaction, extending the case of 1 active and 1 sterile neutrino we have recently examined. We find that, depending on the kind of interaction of sterile neutrino with the active sector, new regions of the parameter space for secret interactions are now allowed leading to interesting phenomenological implications on two benchmark fluxes we consider, namely an astrophysical power law flux, in the range below 100 PeV, and a cosmogenic flux, in the Ultrahigh energy range. First of all, the final active fluxes can present a measurable depletion observable in future experiments. Especially, in the case of only tau neutrino interacting, we find that the effects on the astrophysical power law flux can be so large to be already probed by the IceCube experiment. Moreover, we find intriguing features in the energy dependence of the flavor ratio.
Results are reported from a search for active to sterile neutrino oscillations in the MINOS long-baseline experiment, based on the observation of neutral-current neutrino interactions, from an exposure to the NuMI neutrino beam of $7.07times10^{20}$ protons on target. A total of 802 neutral-current event candidates is observed in the Far Detector, compared to an expected number of $754pm28rm{(stat.)}pm{37}rm{(syst.)}$ for oscillations among three active flavors. The fraction $f_s$ of disappearing umu that may transition to $ u_s$ is found to be less than 22% at the 90% C.L.
We report results from the first search for sterile neutrinos mixing with active neutrinos through a reduction in the rate of neutral-current interactions over a baseline of 810,km between the NOvA detectors. Analyzing a 14-kton detector equivalent e xposure of 6.05$times$10$^{20}$ protons-on-target in the NuMI beam at Fermilab, we observe 95 neutral-current candidates at the Far Detector compared with $83.5 pm 9.7 mbox{(stat.)} pm 9.4 mbox{(syst.)}$ events predicted assuming mixing only occurs between active neutrino species. No evidence for $ u_{mu} rightarrow u_{s}$ transitions is found. Interpreting these results within a 3+1 model, we place constraints on the mixing angles $theta_{24}<20.8^{circ}$ and $theta_{34}<31.2^{circ}$ at the 90% C.L. for $0.05~eV^2leq Delta m^2_{41}leq 0.5~eV^2$, the range of mass splittings that produce no significant oscillations over the Near Detector baseline.
In this short letter, we find that a magnetic transition dipole moment between tau and sterile neutrinos can account for the XENON1T excess events. Unlike the ordinary neutrino dipole moment, the introduction of the new sterile mass scale allows for astrophysical bounds to be suppressed. Interestingly, the best-fit regions that are compatible with the SN1987A imply either boron-8 or CNO neutrinos as the source flux. We find that sterile neutrinos of either $sim$ 260 keV or in the $sim$(500 - 800) keV mass range are capable of evading astrophysical constraints while being able to successfully explain the XENON1T event rate. The sterile neutrino in the best fit parameter space may have significant effects on big bang nucleosynthesis (BBN). We show the region in which a low reheating temperature of the Universe may allow the BBN constraints to be alleviated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا