ﻻ يوجد ملخص باللغة العربية
Ultra High Energy cosmogenic neutrinos may represent a unique opportunity to unveil possible new physics interactions once restricted to the neutrino sector only. In the present paper we study the observable effects of a secret active-sterile interactions, mediated by a pseudoscalar, on the expected flux of cosmogenic neutrinos. The results show that for masses of sterile neutrinos and pseudoscalars of hundreds MeV, necessary to evade cosmological, astrophysical and elementary particle constraints, the presence of such new interactions can significantly change the energy spectrum of cosmogenic neutrinos at Earth in the energy range from PeV to ZeV. Interestingly, the distortion of the spectrum results to be detectable at GRAND apparatus if the scalar mediator mass is around 250 MeV and the UHECRs are dominated by the proton component. Larger mediator masses or a chemical composition of UHECRs dominated by heavier nuclei would require much larger cosmic rays apparatus which might be available in future.
Sterile neutrinos with mass in the eV-scale and large mixings of order $theta_0simeq 0.1$ could explain some anomalies found in short-baseline neutrino oscillation data. Here, we revisit a neutrino portal scenario in which eV-scale sterile neutrinos
We consider the effects of active-sterile secret neutrino interactions, mediated by a new pseudoscalar particle, on high- and ultra high-energy neutrino fluxes. In particular, we focus on the case of 3 active and 1 sterile neutrino coupled by a flavo
Results are reported from a search for active to sterile neutrino oscillations in the MINOS long-baseline experiment, based on the observation of neutral-current neutrino interactions, from an exposure to the NuMI neutrino beam of $7.07times10^{20}$
We report results from the first search for sterile neutrinos mixing with active neutrinos through a reduction in the rate of neutral-current interactions over a baseline of 810,km between the NOvA detectors. Analyzing a 14-kton detector equivalent e
In this short letter, we find that a magnetic transition dipole moment between tau and sterile neutrinos can account for the XENON1T excess events. Unlike the ordinary neutrino dipole moment, the introduction of the new sterile mass scale allows for