ترغب بنشر مسار تعليمي؟ اضغط هنا

We are developing double silicon-on-insulator (DSOI) pixel sensors for various applications such as for high-energy experiments. The performance of DSOI devices has been evaluated including total ionization damage (TID) effect compensation in transis tors using a test-element-group (TEG) up to 2 MGy and in integration-type sensors up to 100 kGy. In this article, successful TID compensation in a pixel-ASD-readout-circuit is shown up to 100 kGy for the application of DSOI to counting-type sensors. The cross-talk suppression in DSOI is being evaluated. These results encourage us that DSOI sensors are applicable to future high-energy experiments such as the BELLE-II experiment or the ILC experiment.
We are developing monolithic pixel sensors based on a 0.2 $mu$m fully-depleted Silicon-on-Insulator (SOI) technology for HEP experiment applications. The total ionizing dose (TID) effect is the major issue in the applications for hard radiation envir onments in HEP experiments. To compensate for TID damage, we have introduced a Double SOI structure which has a Middle Silicon layer (SOI2 layer) in addition. We studied the recovery from TID damage induced by $mathrm{^{60}Co}~gamma$s and other characteristics of an Integration-type Double SOI sensor. The Double SOI sensor irradiated to 100 kGy showed a response for IR laser similar to of a non-irradiated sensor when we applied a negative voltage to the SOI2 layer. We conclude that the Double SOI sensor is radiation hard enough to be used in HEP experiments in harsh radiation environments such as at Bell II or ILC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا