ترغب بنشر مسار تعليمي؟ اضغط هنا

We experimentally study effect of single circular hole on the critical current $I_c$ of narrow superconducting strip with width $W$ much smaller than Pearl penetration depth $Lambda$. We found nonmonotonous dependence of $I_c$ on the location of a ho le across the strip and a weak dependence of $I_c$ on radius of hole has been found in case of hole with $xi ll R ll W$ ($xi$ is a superconducting coherence length) which is placed in the center of strip. The observed effects are caused by competition of two mechanisms of destruction of superconductivity - the entrance of vortex via edge of the strip and the nucleation of the vortex-antivortex pair near the hole. The mechanisms are clearly distinguishable by difference in dependence of $I_c$ on weak magnetic field.
We use external magnetic field to probe the detection mechanism of superconducting nanowire single photon detector. We argue that the hot belt model (which assumes partial suppression of the superconducting order parameter $Delta$ across the whole wi dth of the superconducting nanowire after absorption of the single photon) does not explain observed weak field dependence of the photon count rate (PCR) for photons with $lambda$=450 nm and noticeable {it decrease} of PCR (with increasing the magnetic field) in some range of the currents for photons with wavelengths $lambda$ =450-1200 nm. Found experimental results for all studied wavelengths $lambda = 450-1550$ nm could be explained by the vortex hot spot model (which assumes partial suppression of $Delta$ in the area with size smaller than the width of the nanowire) if one takes into account nucleation and entrance of the vortices to the photon induced hot spot and their pinning by the hot spot with relatively large size and strongly suppressed $Delta$.
We theoretically study the dependence of the intrinsic detection efficiency (IDE) of superconducting single photon detector on the applied current $I$ and magnetic field $H$. We find that the current, at which the resistive state appears in the super conducting film, depends on the position of the hot spot (region with suppressed superconductivity around the place where the photon has been absorbed) with respect to the edges of the film. It provides inevitable smooth dependence IDE(I) when IDE $sim 0.05-1$ even for homogenous straight superconducting film and in the absence of fluctuations. When IDE $lesssim 0.05$ much sharper current dependence comes from the fluctuation assisted vortex entry to the hot spot located near the edge of the film. We find that weak magnetic field strongly affects IDE when the photon detection is connected with fluctuation assisted vortex entry (IDE$ll 1$) and it weakly affects IDE when the photon detection is connected with the current induced vortex entry to the hot spot or nucleation of the vortex-antivortex pair inside the hot spot (IDE$sim 0.05-1$).
119 - D.Yu. Vodolazov 2014
We find the relation between the energy of the absorbed photon and the threshold current at which the resistive state appears in the current-carrying superconducting film with the probability about unity. In our calculations we use the modified hot s pot model, which assumes different strength of suppression of the superconducting order parameter in the finite area of the film around the place where the photon is absorbed. To find the threshold current we solve the Ginzburg-Landau equation for superconducting order parameter, which automatically includes the current continuity equation and it allows us to consider the back effect of current redistribution near the hot spot on the stability of the superconducting state. We find quantitative agreement with the recent experiments, where we use the single fitting parameter which describes what part of the energy of the photon goes for the local destruction of the superconductivity in the film.
We demonstrate experimentally that the presence of a single domain wall in an underlying ferromagnetic BaFe_{12}O_{19} substrate can induce a considerable asymmetry in the current (I) - voltage (V) characteristics of a superconducting Al bridge. The observed diode-like effect, i.e. polarity-dependent critical current, is associated with the formation of a vortex-free channel inside the superconducting area which increases the total current flowing through the superconducting bridge without dissipation. The vortex-free region appears only for a certain sign of the injected current and for a limited range of the external magnetic field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا