ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the results of Mn substitution for Ni in CeNi0.8Bi2, (i.e. CeNi0.8-xMnxBi2). All the samples have an antiferromagnetic ordered state below TN = 5.0 K due to localized 4f-magnetic moment on the Ce ions. Besides this antiferromagnetic orderin g caused by Ce, the magnetic and transport properties are abruptly changed with increasing Mn contents at the boundary composition of x = 0.4. The magnetic state is changed into a ferromagnetic state around 200 K for x > 0.4, where the electrical resistivity is strongly suppressed to become simple metallic. These results of ferromagnetism and metallicity can be explained by the double-exchange mechanism. The mixed valence states of Ni and Mn ions are confirmed by X-ray photoelectron spectroscopy (XPS). For x <= 0.4, the initial Ni3+ state gradually changes to the Ni2+ state with increasing x up to 0.4. On further increase of x > 0.4, the Ni2+ state is substituted for the Mn2+ state, which gradually changes to the final Mn3+ state. We also present an inelastic neutron scattering (INS) measurements on CeNi0.8Bi2 (i.e. x=0) between 1.2 and 12 K. The high energy INS study reveals the presence of two well defined crystal electric field (CEF) excitations near 9 meV and 19 meV at 1.2 K and 6 K, while the low energy INS study reveals the presence of quasi-elastic scattering above 4 K. We will discuss our INS results of CeNi0.8Bi2 based on the crystal electric field model.
We have carried out muon spin relaxation (muSR), neutron diffraction and inelastic neutron scattering (INS) investigations on polycrystalline samples of Ce(Ru1-xFex)2Al10 (x=0, 0.3, 0.5, 0.8 and 1) to investigate the nature of the ground state (magne tic ordered versus paramagnetic) and the origin of the spin gap formation as evident from the bulk measurements in the end members. Our zero-field muSR spectra clearly reveal coherent two-frequency oscillations at low temperature in x=0, 0.3 and 0.5 samples, which confirms the long-range magnetic ordering of the Ce-moment with TN=27, 26 and 21 K respectively. On the other hand the muSR spectra of x=0.8 and x=1 down to 1.4 K and 0.045 K, respectively exhibit a temperature independent Kubo-Toyabe term confirming a paramagnetic ground state. The long-range magnetic ordering in x=0.5 below 21 K has been confirmed through the neutron diffraction study. INS measurements of x=0 clearly reveal the presence of a sharp inelastic excitation near 8 meV between 5 K and 26 K, due to an opening of a gap in the spin excitation spectrum, which transforms into a broad response at and above 30 K. Interestingly, at 4.5 K the spin gap excitation broadens in x=0.3 and exhibits two clear peaks at 8.4(3) and 12.0(5) meV in x=0.5. In the x=0.8 sample, which remains paramagnetic down to 1.2 K, there is a clear signature of a spin gap of 10-12 meV at 7 K, with a strong Q-dependent intensity. Evidence of a spin gap of 12.5(5) meV has also been found in x=1. The observation of a spin gap in the paramagnetic samples (x=0.8 and 1) is an interesting finding in this study and it challenges our understanding of the origin of the semiconducting gap in CeT2Al10 (T=Ru and Os) compounds in terms of hybridization gap opening only a small part of the Fermi surface, gapped spin waves, or a spin-dimer gap.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا