ترغب بنشر مسار تعليمي؟ اضغط هنا

75 - W.C. Chang , D.S. Ahn , J.K. Ahn 2010
The LEPS/SPring-8 experiment made a comprehensive measurement of the spin-density matrix elements for $gamma p to phi p$, $gamma d to phi p n$ and $gamma d to phi d$ at forward production angles. A linearly polarized photon beam at $E_{gamma}$=1.6-2. 4 GeV was used for the production of $phi$ mesons. The natural-parity Pomeron exchange processes remains dominant nearthreshold. The unnatural-parity processes of pseudoscalar exchange is visible in the production from nucleons but is greatly reduced in the coherent production from deuterons. There is no strong $E_{gamma}$-dependence, but some dependence on momentum-transfer. A small but finite value of the spin-density matrix elements reflecting helicity-nonconserving amplitudes in the $t$-channel is observed.
75 - M. Sumihama , D.S. Ahn , J.K. Ahn 2009
Differential cross sections for eta photoproduction off protons have been measured at E_gamma = 1.6 - 2.4 GeV in the backward direction. A bump structure has been observed above 2.0 GeV in the total energy. No such bump is observed in cross sections for eta, omega and pi0 photoproductions. It is inferred that this unique structure in eta photoproduction is due to a baryon resonance with a large portion of ss-bar strongly coupled to the etaN channel.
70 - H. Kohri , D.S. Ahn , J.K. Ahn 2009
Differential cross sections and photon-beam asymmetries for the gamma p -> K+ Lambda(1520) reaction have been measured with linearly polarized photon beams at energies from the threshold to 2.4 GeV at 0.6<cos(theta)<1. A new bump structure was found at W=2.11 GeV in the cross sections. The bump is not well reproduced by theoretical calculations introducing a nucleon resonance with J<=3/2. This result suggests that the bump might be produced by a nucleon resonance possibly with J>=5/2 or by a new reaction process, for example an interference effect with the phi photoproduction having a similar bump structure in the cross sections.
The gamma d to K^+K^-pn reaction has been studied to search for the evidence of the Theta^+ by detecting K^+K^- pairs at forward angles. The Fermi-motion corrected nK^+ invariant mass distribution shows a narrow peak at 1.524 +- 0.002 + 0.003 GeV/c^2 . The statistical significance of the peak calculated from a shape analysis is 5.1 sigma, and the differential cross-section for the gamma n to K^- Theta^+ reaction is estimated to be 12 +- 2 nb/sr in the photon energy range from 2.0 GeV to 2.4 GeV in the LEPS angular range by assuming the isotropic production of the Theta^+ in the gamma n center-of-mass system. The obtained results support the existence of the Theta^+.
Differential cross sections for $gamma p to K^+Lambda(1405)$ and $gamma p to K^+Sigma^0(1385)$ reactions have been measured in the photon energy range from 1.5 to 2.4 GeV and the angular range of $0.8<cos(Theta)<1.0$ for the $K^+$ scattering angle in the center-of-mass system. This data is the first measurement of the $Lambda(1405)$ photoproduction cross section. The lineshapes of LamS measured in $Sigma^+pi^-$ and $Sigma^-pi^+$ decay modes were different with each other, indicating a strong interference of the isospin 0 and 1 terms of the $Sigmapi$ scattering amplitudes. The ratios of LamS production to SigS production were measured in two photon energy ranges: near the production threshold ($1.5<E_gamma<2.0$ GeV) and far from it ($2.0 <E_gamma<2.4$ GeV). The observed ratio decreased in the higher photon energy region, which may suggest different production mechanisms and internal structures for these hyperon resonances.
Beam polarization asymmetries for the p(gamma,K+)Lambda and p(gamma,K+)sigma0 reactions are measured for the first time for Egamma=1.5-2.4 GeV and 0.6<cos(theta_cm(K+))<1.0 by using linearly polarized photons at the Laser-Electron-Photon facility at SPring-8 (LEPS). The observed asymmetries are positive and gradually increase with rising photon energy. The data are not consistent with theoretical predictions based on tree-level effective Lagrangian approaches. Including the new results in the development of the models is, therefore, crucial for understanding the reaction mechanism and to test the presence of baryon resonances which are predicted in quark models but are sofar undiscovered.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا