ترغب بنشر مسار تعليمي؟ اضغط هنا

We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are present ed for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.
In the last decade direct detection Dark Matter (DM) experiments have increased enormously their sensitivity and ton-scale setups have been proposed, especially using germanium and xenon targets with double readout and background discrimination capab ilities. In light of this situation, we study the prospects for determining the parameters of Weakly Interacting Massive Particle (WIMP) DM (mass, spin-dependent (SD) and spin-independent (SI) cross section off nucleons) by combining the results of such experiments in the case of a hypothetical detection. In general, the degeneracy between the SD and SI components of the scattering cross section can only be removed using targets with different sensitivities to these components. Scintillating bolometers, with particle discrimination capability, very good energy resolution and threshold and a wide choice of target materials, are an excellent tool for a multitarget complementary DM search. We investigate how the simultaneous use of scintillating targets with different SD-SI sensitivities and/or light isotopes (as the case of CaF2 and NaI) significantly improves the determination of the WIMP parameters. In order to make the analysis more realistic we include the effect of uncertainties in the halo model and in the spin-dependent nuclear structure functions, as well as the effect of a thermal quenching different from 1.
A claim for evidence of dark matter interactions in the DAMA experiment has been recently reinforced. We employ a new type of germanium detector to conclusively rule out a standard isothermal galactic halo of Weakly Interacting Massive Particles (WIM Ps) as the explanation for the annual modulation effect leading to the claim. Bounds are similarly imposed on a suggestion that dark pseudoscalars mightlead to the effect. We describe the sensitivity to light dark matter particles achievable with our device, in particular to Next-to-Minimal Supersymmetric Model candidates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا