ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the electronic structure of carbon nanotubes functionalized by adsorbates anchored with single C-C covalent bonds. We find that, despite the particular adsorbate, a spin moment with a universal value of 1.0 $mu_B$ per molecule is induc ed at low coverage. Therefore, we propose a mechanism of bonding-induced magnetism at the carbon surface. The adsorption of a single molecule creates a dispersionless defect state at the Fermi energy, which is mainly localized in the carbon wall and presents a small contribution from the adsorbate. This universal spin moment is fairly independent of the coverage as long as all the molecules occupy the same graphenic sublattice. The magnetic coupling between adsorbates is also studied and reveals a key dependence on the graphenic sublattice adsorption site.
Using time-dependent density-functional theory we calculate from first principles the rate of energy transfer from a moving proton or antiproton to the electrons of an insulating material, LiF. The behavior of the electronic stopping power versus pro jectile velocity displays an effective threshold velocity of ~0.2 a.u. for the proton, consistent with recent experimental observations, and also for the antiproton. The calculated proton/antiproton stopping-power ratio is ~2.4 at velocities slightly above the threshold (v~0.4 a.u.), as compared to the experimental value of 2.1. The projectile energy loss mechanism is observed to be stationary and extremely local.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا