ترغب بنشر مسار تعليمي؟ اضغط هنا

68 - D. Hsieh , D. Qian , R.F. Berger 2014
We report high resolution neutron scattering measurements on the triangular lattice Mott insulator Na$_x$CrO$_2$ ($x$=1) which has recently been shown to exhibit an unusually broad fluctuating crossover regime extending far below the onset of spin fr eezing ($T_csim$41K). Our results show that below some crossover temperature ($Tsim0.75T_c$) a small incommensuration develops which helps resolve the spin frustration and drives three-dimensional magnetic order supporting coherent spin wave modes. This incommensuration assisted dimensional crossover suggests that inter-layer frustration is responsible for stabilizing the rare 2D correlated phase above 0.75$T_c$. In contrast to the host compound of 2D cobaltate superconductor such as Na$_x$CoO$_2$ ($xi_c>50$AA), no magnetic long-range order is observed down to 1.5K ($xi_c<16$AA).
109 - Y. Xia , D. Qian , L. Wray 2009
We report the first photoemission study of Fe$_{1+x}$Te - the host compound of the newly discovered iron-chalcogenide superconductors (maximum T$_c$ $sim$ 27K). Our results reveal a pair of nearly electron-hole compensated Fermi pockets, strong Fermi velocity renormalization and an absence of a spin-density-wave gap. A shadow hole pocket is observed at the X-point of the Brillouin zone which is consistent with a long-range ordered magneto-structural groundstate. No signature of Fermi surface nesting instability associated with Q=($pi$/2, $pi$/2) is observed. Our results collectively reveal that the Fe$_{1+x}$Te series is dramatically different from the high T$_{c}$ pnictides and likely harbor unusual mechanism for superconductivity and magnetic order.
475 - D. Hsieh , Y. Xia , D. Qian 2009
Electron systems that possess light-like dispersion relations or the conical Dirac spectrum, such as graphene and bismuth, have recently been shown to harbor unusual collective states in high magnetic fields. Such states are possible because their li ght-like electrons come in spin pairs that are chiral,which means that their direction of propagation is tied to a quantity called pseudospin that describes their location in the crystal lattice. An emerging direction in quantum materials research is the manipulation of atomic spin-orbit coupling to simulate the effect of a spin dependent magnetic field,in attempt to realize novel spin phases of matter. This effect has been proposed to realize systems consisting of unpaired Dirac cones that are helical, meaning their direction of propagation is tied to the electron spin itself, which are forbidden to exist in graphene or bismuth. The experimental existence of topological order can not be determined without spin-resolved measurements. Here we report a spin-and angle-resolved photoemission study of the hexagonal surface of the Bi2Te3 and Bi{2-x}MnxTe3 series, which is found to exhibit a single helical Dirac cone that is fully spin-polarized. Our observations of a gap in the bulk spin-degenerate band and a spin-resolved surface Dirac node close to the chemical potential show that the low energy dynamics of Bi2Te3 is dominated by the unpaired spin-helical Dirac modes. Our spin-texture measurements prove the existence of a rare topological phase in this materials class for the first time, and suggest its suitability for novel 2D Dirac spin device applications beyond the chiral variety or traditional graphene.
80 - Y. Xia , D. Qian , L. Wray 2009
We report the first photoemission study of Fe1+xTe - the host compound of the newly discovered iron-chalcogenide superconductors. Our results reveal a pair of nearly electron- hole compensated Fermi pockets, strong Fermi velocity renormalization and an absence of a spin-density-wave gap. A shadow hole pocket is observed at the X-point of the Brillouin zone which is consistent with a long-range ordered magneto-structural groundstate. No signature of Fermi surface nesting instability associated with Q= pi(1/2, 1/2) is observed. Our results collectively reveal that the Fe1+xTe series is dramatically different from the undoped phases of the high Tc pnictides and likely harbor unusual mechanism for superconductivity and quantum magnetic order.
98 - L. Wray , D. Qian , D. Hsieh 2008
We present a systematic angle-resolved photoemission spectroscopic study of the high-Tc superconductor class (Sr/Ba){1-x}(K/Na)xFe2As2. By utilizing a photon-energy-modulation contrast and scattering geometry we report the Fermi surface and the momen tum dependence of the superconducting gap, Delta(k). A prominent quasiparticle dispersion kink reflecting strong scattering processes is observed in a binding-energy range of 25-55 meV in the superconducting state, and the coherence length or the extent of the Cooper pair wave function is found to be about 20-angstrom, which is uncharacteristic of a superconducting phase realized by the BCS-phonon-retardation mechanism. The observed 40 meV kink likely reflects contributions from the frustrated spin excitations and scattering from the soft phonons. Results taken collectively provide direct clues to the nature of the pairing potential including an internal phase-shift factor in the superconducting order parameter which leads to a Brillouin zone node in a strong-coupling setting.
73 - L. Wray , D. Qian , D. Hsieh 2008
We present a systematic photoemission study of the newly discovered high Tc superconductor class (Sr/Ba)1-xKxFe2As2. By utilizing a unique photon energy range and scattering geometry we resolve the details of the single particle dynamics of interacti ng electrons on the central Fermi surfaces of this series which shows overall strong coupling behavior (2D/kBTc = 6). Quasiparticle dispersion kinks are observed in a binding energy range of 15 to 50 meV which matches the magnetic excitation energy scales (parameterized by J1,J2). The size of the Cooper pair wavefunction is found to be less than 20A indicating a short in-plane scale uncharacteristic of a BCS-phonon scenario but suggestive of a phase factor in the global order parameter. The kink likely reflects contributions from the strongly frustrated fluctuating spin excitations and the soft phonons around 20-40 meV. Our results provide important clue to the nature of the pairing potential realized in these superconductors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا