ترغب بنشر مسار تعليمي؟ اضغط هنا

First observation of spin-helical Dirac fermions and topological phases in undoped and doped Bi2Te3 demonstrated by spin-ARPES spectroscopy

532   0   0.0 ( 0 )
 نشر من قبل M Zahid Hasan
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron systems that possess light-like dispersion relations or the conical Dirac spectrum, such as graphene and bismuth, have recently been shown to harbor unusual collective states in high magnetic fields. Such states are possible because their light-like electrons come in spin pairs that are chiral,which means that their direction of propagation is tied to a quantity called pseudospin that describes their location in the crystal lattice. An emerging direction in quantum materials research is the manipulation of atomic spin-orbit coupling to simulate the effect of a spin dependent magnetic field,in attempt to realize novel spin phases of matter. This effect has been proposed to realize systems consisting of unpaired Dirac cones that are helical, meaning their direction of propagation is tied to the electron spin itself, which are forbidden to exist in graphene or bismuth. The experimental existence of topological order can not be determined without spin-resolved measurements. Here we report a spin-and angle-resolved photoemission study of the hexagonal surface of the Bi2Te3 and Bi{2-x}MnxTe3 series, which is found to exhibit a single helical Dirac cone that is fully spin-polarized. Our observations of a gap in the bulk spin-degenerate band and a spin-resolved surface Dirac node close to the chemical potential show that the low energy dynamics of Bi2Te3 is dominated by the unpaired spin-helical Dirac modes. Our spin-texture measurements prove the existence of a rare topological phase in this materials class for the first time, and suggest its suitability for novel 2D Dirac spin device applications beyond the chiral variety or traditional graphene.


قيم البحث

اقرأ أيضاً

The transport length $l_textrm{tr}$ and the mean free path $l_textrm{e}$ are experimentally determined for bulk and surface states in a Bi$_2$Se$_3$ nanoribbon by quantum transport and transconductance measurements. We show that the anisotropic scatt ering of spin-helical Dirac fermions results in a strong enhancement of $l_textrm{tr}$, which confirms theoretical predictions cite{Culcer2010}. Despite strong disorder ($l_textrm{e}approx30$~nm), our result further points to the long-range nature of the scattering potential, giving a large ratio $l_textrm{tr}/l_textrm{e}approx8$ that is likely limited by a finite bulk/surface coupling. This suggests that the spin-flip length could reach the micron size in disordered 3D topological insulator nanostructures with a reduced bulk doping, even if due to charge compensation.
We report the observation of a non-trivial spin texture in Dirac node arcs, novel topological objects formed when Dirac cones of massless particles extend along an open one-dimensional line in momentum space. We find that such states are present in a ll the compounds of the tetradymite M$_2$Te$_2$X family (M$=$Ti, Zr or Hf and X$=$P or As), regardless of the weak or strong character of the topological invariant. The Dirac node arcs in tetradymites are thus the simplest possible, textbook example, of a type-I Dirac system with a single spin-polarized node arc.
81 - Jun Goryo 2010
We consider a two-dimensional bipartite lattice system. In such a system, the Bloch band spectrum can have some valley points, around which Dirac fermions appear as the low-energy excitations. Each valley point has a valley spin +1 or -1. In such a s ystem, there are two topological numbers counting vortices and merons in the Brillouin zone, respectively. These numbers are equivalent, and this fact leads to a sum rule which states that the total sum of the valley spins is absent even in a system without time-reversal and parity symmetries. We can see some similarity between the valley spin and chirality in the Nielsen-Ninomiya no-go theorem in odd-spatial dimensions.
Helical symmetry of massive Dirac fermions is broken explicitly in the presence of electric and magnetic fields. Here we present two equations for the divergence of helical and axial-vector currents following the Jackiw-Johnson approach to the anomal y of the neutral axial vector current. We discover the contribution from the helical symmetry breaking is attributed to the occupancy of the two states at the top of the valence band and the bottom of the conduction band. The explicit symmetry breaking fully cancels the anomalous correction from the quantum fluctuation in the band gap. The chiral anomaly can be derived from the helical symmetry breaking. It provides an alternative route to understand the chiral anomaly from the point of view of the helical symmetry breaking. The pertinent physical consequences in condensed matter are the helical magnetic effect which means a charge current circulating at the direction of the magnetic field, and the mass-dependent positive longitudinal magnetoconductivity as a transport signature. The discovery not only reflects anomalous magneto-transport properties of massive Dirac materials but also reveals the close relation between the helical symmetry breaking and the physics of chiral anomaly in quantum field theory and high energy physics.
Knowledge of the topology of the electronic ground state of materials has led to deep insights to novel phenomena such as the integer quantum Hall effect and fermion-number fractionalization, as well as other properties of matter. Joining two insulat ors of different topological classes produces fascinating boundary states in the band gap. Another exciting recent development is the bottom-up synthesis (from molecular precursors) of graphene nanoribbons (GNRs) with atomic precision control of their edge and width. Here we connect these two fields, and show for the first time that semiconducting GNRs of different width, edge, and end termination belong to different topological classes. The topology of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formula for their topological invariants, and show that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisted of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1/2 chain with tunable exchange interaction. The discoveries here are not only of scientific interest for studies of quasi one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا