ترغب بنشر مسار تعليمي؟ اضغط هنا

Regular arrays of InP nano pillars have been fabricated by low energy Electron Cyclotron Resonance (ECR) Ar+ ion irradiation on InP(111) surface. Several scanning electron microscopy (SEM) images have been utilized to invetsigate the width, height, a nd orientation of these nano pillars on InP(111) surfaces. The average width and length of these nano-pillars are about 50 nm and 500 nm, respectively. The standing angle with respect to the surface of the nano-pillars depend on the incidence angle of the Ar ion irradiation during the fabrication process. Interestingly, the growth direction of the nano pillars are along the reflection direction of the ion beam and the standing angles are nearly same as the ion incidence angle with the surface normal. This nano-pillas are easily transferred from the InP surface to double sided carbon tape without any damage. High Resolution Transmission Electron Microscopy (HRTEM) study of single nano-pillar reveals that this nano-pillar are almost crystalline in nature except 2-4 nm amorphous layer on the outer surface. The transmission electron microscopy combined with energy-dispersive x-ray spectroscopy (TEM-EDS) analysis of these nano pillars exhibit that the ratio of In and P is little higher compared to the bulk InP.
We report formation of self organized InP nano dots using 3 keV Ar+ ion sputtering, at $15^circ$ incidence from surface normal, on InP(111) surface. Morphology and optical properties of the sputtered surface, as a function of sputtering time, have be en investigated by Scanning Probe Microscopy and Raman Scattering techniques. Uniform patterns of nano dots are observed for different durations of sputtering. The sizes and the heights of these nano dots vary between 10 to 100 nm and 20 to 40 nm, respectively. With increasing of sputtering time, t, the size and height of these nano dots increases up to a certain sputtering time $t_c$. However beyond $t_c$, the dots break down into smaller nanostructures, and as a result, the size and height of these nanostructures decrease. The uniformity and regularity of these structures are also lost for sputtering beyond $t_c$. The crossover behavior is also observed in the rms surface roughness. Raman investigations of InP nano dots reveal optical phonon softening due to phonon confinement in the surface nano dots.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا