ترغب بنشر مسار تعليمي؟ اضغط هنا

We present extensive observations of the Type Ib/c SN2013ge from -13 to +457 days, including spectra and Swift UV-optical photometry beginning 2-4 days post-explosion. This data set makes SN2013ge one of the best observed normal Type Ib/c SN at early times---when the light curve is particularly sensitive to the progenitor configuration and mixing of radioactive elements---and reveals two distinct light curve components in the UV bands. The first component rises over 4-5 days and is visible for the first week post-explosion. Spectra of the first component have blue continua and show a plethora of high velocity (~15,000 km/s) but narrow (~3500 km/s) features, indicating that the line-forming region is restricted. The explosion parameters estimated for the bulk explosion are standard for Type Ib/c SN, and there is evidence for weak He features at early times. In addition, SN2013ge exploded in a low metallicity environment and we have obtained some of the deepest radio and X-ray limits for a Type Ib/c SN to date, which constrain the progenitor mass-loss rate. We are left with two distinct progenitor scenarios for SN2013ge, depending on our interpretation of the early emission. If the first component is cooling envelope emission, then the progenitor of SN2013ge either possessed a low-mass extended envelope or ejected a portion of its envelope in the final <1 year before core-collapse. Alternatively, if the first component is due to outwardly mixed Ni-56, then our observations are consistent with the asymmetric ejection of a distinct clump of nickel-rich material at high velocities. Current models for the collision of a SN shock with a binary companion cannot reproduce both the timescale and luminosity of the early emission in SN2013ge. Finally, the spectra of the first component of SN2013ge are similar to those of the rapidly-declining SN2002bj.
The examination of two 2010 Chandra ACIS exposures of the Circinus galaxy resulted in the discovery of two pulsators: CXO J141430.1-651621 and CXOU J141332.9-651756. We also detected 26-ks pulsations in CG X-1, consistently with previous measures. Fo r ~40 other sources, we obtained limits on periodic modulations. In CXO J141430.1-651621, which is ~2 arcmin outside the Circinus galaxy, we detected signals at 6120(1) s and 64.2(5) ks. In the longest observation, the source showed a flux of ~1.1e-13 erg/cm^2/s (absorbed, 0.5-10 keV) and the spectrum could be described by a power-law with photon index ~1.4. From archival observations, we found that the luminosity is variable by ~50 per cent on time-scales of weeks-years. The two periodicities pin down CXO J141430.1-651621 as a cataclysmic variable of the intermediate polar subtype. The period of CXOU J141332.9-651756 is 6378(3) s. It is located inside the Circinus galaxy, but the low absorption indicates a Galactic foreground object. The flux was ~5e-14 erg/cm^2/s in the Chandra observations and showed ~50 per cent variations on weekly/yearly scales; the spectrum is well fit by a power law ~0.9. These characteristics and the large modulation suggest that CXOU J141332.9-651756 is a magnetic cataclysmic variable, probably a polar. For CG X-1, we show that if the source is in the Circinus galaxy, its properties are consistent with a Wolf-Rayet plus black hole binary. We consider the implications of this for ultraluminous X-ray sources and the prospects of Advanced LIGO and Virgo. In particular, from the current sample of WR-BH systems we estimate an upper limit to the detection rate of stellar BH-BH mergers of ~16 events per yr.
Here we revisit line identifications of type I supernovae and highlight trace amounts of unburned hydrogen as an important free parameter for the composition of the progenitor. Most 1-dimensional stripped-envelope models of supernovae indicate that o bserved features near 6000-6400 Ang in type I spectra are due to more than Si II 6355. However, while an interpretation of conspicuous Si II 6355 can approximate 6150 Ang absorption features for all type Ia supernovae during the first month of free expansion, similar identifications applied to 6250 Ang features of type Ib and Ic supernovae have not been as successful. When the corresponding synthetic spectra are compared to high quality time-series observations, the computed spectra are frequently too blue in wavelength. Some improvement can be achieved with Fe II lines that contribute red-ward of 6150 Ang, however the computed spectra either remain too blue, or the spectrum only reaches fair agreement when the rise-time to peak brightness of the model conflicts with observations by a factor of two. This degree of disagreement brings into question the proposed explosion scenario. Similarly, a detection of strong Si II 6355 in the spectra of broad-lined Ic and super-luminous events of type I/R is less convincing despite numerous model spectra used to show otherwise. Alternatively, we suggest 6000-6400 Ang features are possibly influenced by either trace amounts of hydrogen, or blue-shifted absorption and emission in Halpha, the latter being an effect which is frequently observed in the spectra of hydrogen-rich, type II supernovae.
We report the late-time evolution of Type IIb Supernova (SN IIb) 2013df. SN 2013df showed a dramatic change in its spectral features at ~1 year after the explosion. Early on it showed typical characteristics shared by SNe IIb/Ib/Ic dominated by metal emission lines, while later on it was dominated by broad and flat-topped Halpha and He I emissions. The late-time spectra are strikingly similar to SN IIb 1993J, which is the only previous example clearly showing the same transition. This late-time evolution is fully explained by a change in the energy input from the $^{56}$Co decay to the interaction between the SN ejecta and dense circumstellar matter (CSM). The mass loss rate is derived to be ~(5.4 +- 3.2) x 10^{-5} Msun/yr (for the wind velocity of ~20 km/s), similar to SN 1993J but larger than SN IIb 2011dh by an order of magnitude. The striking similarity between SNe 2013df and 1993J in the (candidate) progenitors and the CSM environments, and the contrast in these natures to SN 2011dh, infer that there is a link between the natures of the progenitor and the mass loss: SNe IIb with a more extended progenitor have experienced a much stronger mass loss in the final centuries toward the explosion. It might indicate that SNe IIb from a more extended progenitor are the explosions during a strong binary interaction phase, while those from a less extended progenitor have a delay between the strong binary interaction and the explosion.
We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spe ctroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 +/- 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of 20,000 km/s that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (> 27,000 km/s). We use these observations to estimate explosion properties and derive a total ejecta mass of 2.7 Msolar, a kinetic energy of 1.0x10^{52} erg, and a 56Ni mass of 0.1-0.2 Msolar. Nebular spectra (t > 200d) exhibit an asymmetric double-peaked [OI] 6300,6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black-hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable properties including above-average environmental metallicities of Z > Zsolar, moderate to high levels of host-galaxy extinction (E(B-V) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] > 1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.
The diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond with electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (~30 days) timescales. The 4428 and 6283 Angstrom DIB features get weaker with time, whereas the 5780 Angstrom feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of the DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.
The 2012 explosion of SN2009ip raises questions about our understanding of the late stages of massive star evolution. Here we present a comprehensive study of SN2009ip during its remarkable re-brightening(s). High-cadence photometric and spectroscopi c observations from the GeV to the radio band obtained from a variety of ground-based and space facilities (including the VLA, Swift, Fermi, HST and XMM) constrain SN2009ip to be a low energy (E~ 10^50 erg for an ejecta mass ~ 0.5 Msun) and likely asymmetric explosion in a complex medium shaped by multiple eruptions of the restless progenitor star. Most of the energy is radiated as a result of the shock breaking out through a dense shell of material located at 5x10^14 cm with M~0.1 Msun, ejected by the precursor outburst ~40 days before the major explosion. We interpret the NIR excess of emission as signature of dust vaporization of material located further out (R>4x 10^15 cm), the origin of which has to be connected with documented mass loss episodes in the previous years. Our modeling predicts bright neutrino emission associated with the shock break-out if the cosmic ray energy is comparable to the radiated energy. We connect this phenomenology with the explosive ejection of the outer layers of the massive progenitor star, that later interacted with material deposited in the surroundings by previous eruptions. Future observations will reveal if the luminous blue variable (LBV) progenitor star survived. Irrespective of whether the explosion was terminal, SN2009ip brought to light the existence of new channels for sustained episodic mass-loss, the physical origin of which has yet to be identified.
We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous SN Ib-like He I line s and other absorption features at velocities reaching 2 x 10^4 km/s in its early spectra, and a broad light curve that peaked at M_B = -18.1 mag. Models of these data indicate a large explosion kinetic energy of 10^{52} erg and 56Ni mass ejection of 0.3 Msolar on par with SN 1998bw. SN 2012aus spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities > 4500 km/s, as well as O I and Mg I lines at noticeably smaller velocities of 2000 km/s. Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span -21 < M_B < -17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.
We present X-ray, UV/optical, and radio observations of the stripped-envelope, core-collapse supernova (SN) 2011ei, one of the least luminous SNe IIb or Ib observed to date. Our observations begin with a discovery within 1 day of explosion and span s everal months afterward. Early optical spectra exhibit broad, Type II-like hydrogen Balmer profiles that subside rapidly and are replaced by Type Ib-like He-rich features on the timescale of one week. High-cadence monitoring of this transition suggests that absorption attributable to a high velocity (> 12,000 km/s) H-rich shell is not rare in Type Ib events. Radio observations imply a shock velocity of v = 0.13c and a progenitor star mass-loss rate of 1.4 x 10^{-5} Msun yr^{-1} (assuming wind velocity v_w=10^3 km/s). This is consistent with independent constraints from deep X-ray observations with Swift-XRT and Chandra. Overall, the multi-wavelength properties of SN 2011ei are consistent with the explosion of a lower-mass (3-4 Msun), compact (R* <= 1x10^{11} cm), He core star. The star retained a thin hydrogen envelope at the time of explosion, and was embedded in an inhomogeneous circumstellar wind suggestive of modest episodic mass-loss. We conclude that SN 2011eis rapid spectral metamorphosis is indicative of time-dependent classifications that bias estimates of explosion rates for Type IIb and Ib objects, and that important information about a progenitor stars evolutionary state and mass-loss immediately prior to SN explosion can be inferred from timely multi-wavelength observations.
Ground-based optical spectra and Hubble Space Telescope images of ten core-collapse supernovae (CCSNe) obtained several years to decades after outburst are analyzed with the aim of understanding the general properties of their late-time emissions. Ne w observations of SN 1957D, 1970G, 1980K, and 1993J are included as part of the study. Blueshifted line emissions in oxygen and/or hydrogen with conspicuous line substructure are a common and long-lasting phenomenon in the late-time spectra. Followed through multiple epochs, changes in the relative strengths and velocity widths of the emission lines are consistent with expectations for emissions produced by interaction between SN ejecta and the progenitor stars circumstellar material. The most distinct trend is an increase in the strength of [O III]/([O I]+[O II]) with age, and a decline in Halpha/([O I]+[O II]) which is broadly consistent with the view that the reverse shock has passed through the H envelope of the ejecta in many of these objects. We also present a spatially integrated spectrum of the young Galactic supernova remnant Cassiopeia A (Cas A). Similarities observed between the emission line profiles of the 330 yr old Cas A remnant and decades old CCSNe suggest that observed emission line asymmetry in evolved CCSN spectra may be associated with dust in the ejecta, and that minor peak substructure typically interpreted as clumps or blobs of ejecta may instead be linked with large-scale rings of SN debris.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا