ترغب بنشر مسار تعليمي؟ اضغط هنا

A panchromatic view of the restless SN2009ip reveals the explosive ejection of a massive star envelope

99   0   0.0 ( 0 )
 نشر من قبل Raffaella Margutti
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 2012 explosion of SN2009ip raises questions about our understanding of the late stages of massive star evolution. Here we present a comprehensive study of SN2009ip during its remarkable re-brightening(s). High-cadence photometric and spectroscopic observations from the GeV to the radio band obtained from a variety of ground-based and space facilities (including the VLA, Swift, Fermi, HST and XMM) constrain SN2009ip to be a low energy (E~ 10^50 erg for an ejecta mass ~ 0.5 Msun) and likely asymmetric explosion in a complex medium shaped by multiple eruptions of the restless progenitor star. Most of the energy is radiated as a result of the shock breaking out through a dense shell of material located at 5x10^14 cm with M~0.1 Msun, ejected by the precursor outburst ~40 days before the major explosion. We interpret the NIR excess of emission as signature of dust vaporization of material located further out (R>4x 10^15 cm), the origin of which has to be connected with documented mass loss episodes in the previous years. Our modeling predicts bright neutrino emission associated with the shock break-out if the cosmic ray energy is comparable to the radiated energy. We connect this phenomenology with the explosive ejection of the outer layers of the massive progenitor star, that later interacted with material deposited in the surroundings by previous eruptions. Future observations will reveal if the luminous blue variable (LBV) progenitor star survived. Irrespective of whether the explosion was terminal, SN2009ip brought to light the existence of new channels for sustained episodic mass-loss, the physical origin of which has yet to be identified.



قيم البحث

اقرأ أيضاً

We present and analyse spectra of the Type IIn supernova 1994W obtained between 18 and 203 days after explosion. During the luminous phase (first 100 d) the line profiles are composed of three major components: (i) narrow P-Cygni lines with the absor ption minima at -700 km/s; (ii) broad emission lines with BVZI ~4000 km/s; and (iii) broad, smooth wings, most apparent in H-alpha. These components are identified with an expanding circumstellar (CS) envelope, shocked cool gas in the forward post-shock region, and multiple Thomson scattering in the CS envelope, respectively. The absence of broad P-Cygni lines from the supernova is the result of the formation of an optically thick, cool, dense shell at the interface of the ejecta and the CS envelope. We model the supernova deceleration and Thomson scattering wings to recover the density, radial extent and Thomson optical depth of the CS envelope during the first month. We reproduce the light curve with a hydrodynamical model and find it to be powered by a combination of internal energy leakage after the explosion of an extended pre-supernova (~10^15 cm) and luminosity from circumstellar interaction. We recover the pre-explosion kinematics of the CS envelope: it is close to homologous expansion with outer velocity ~1100 km/s and a kinematic age of ~1.5 yr. The CS envelopes high mass and kinetic energy, combined with its small age, strongly suggest that the CS envelope was explosively ejected about 1.5 yr before the supernova explosion.
We present multi-wavelength observations of SN2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays. SN2014C was the explosion of an H-stripped progenitor star with ordinary explosion parameters. However, over the time scale of ~1yr, SN2014C experienced a complete metamorphosis and evolved from an ordinary H-poor supernova of type Ib into a strongly interacting, H-rich supernova of type IIn. Signatures of the SN shock interacting with a dense medium are observed across the spectrum. Coordinated observations with Swift, Chandra and NuSTAR have captured the evolution in detail and revealed the presence of a massive shell of ~1 Msun of hydrogen-rich material at ~6d16 cm from the explosion site. We estimate that the shell was ejected by the progenitor star in the decades to centuries before core collapse. This result poses significant challenges to current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last stages of nuclear burning in massive stars as potential triggers of the time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN2014C-like signatures in ~10% of SNe with constraining radio data. This fraction is somewhat larger but reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution IF the ejected material can survive in the close environment for 1000-10000 yrs. Alternatively, nuclear burning instabilities extending all the way to the core C-burning phase might also play a critical role.
The massive young stellar object S255IR NIRS3 embedded in the star forming core SMA1 has been recently observed with a luminosity burst, which is conjectured as a disc-mediated variable accretion event. In this context, it is imperative to characteri ze the gas properties around the massive young stellar object. With this in mind, we carried out high angular resolution observations with the Atacama Large Millimeter and submillimeter Array and imaged the 900 $mu m$ dust continuum and the CH$_3$CN $J$=19$-$18 $K$=0$-$10 transitions of S255IR SMA1. The integrated CH$_3$CN emission exhibits an elongated feature with an extent of 1800 au in the northwest-southeast direction at a position angle of 165 degree, which is nearly perpendicular to the bipolar outflow. We confirm the presence of dense (a few $times 10^{9}$ cm$^{-3}$) and hot ($sim$ 400 K) gas immediately surrounding the central protostar. The CH$_3$CN emission features a velocity gradient along the elongated ridge and by modelling the gas kinematics based on features in the position-velocity diagram, we infer that the gas is best described by a flattened rotating infalling envelope (or pseudo-disc). A mass infall rate of a few $times$ 10$^{-4}$ solar-mass per year is derived. If there exists a putative Keplerian disc directly involved in the mass accretion onto the star and jet/outflow launching, it is likely smaller than 125 au and unresolved by our observations. We show qualitative resemblances between the gas properties (such as density and kinematics) in 255IR SMA1 inferred from our observations and those in a numerical simulation particularly tailored for studying the burst mode of massive star formation.
208 - E. Zapartas , M. Renzo , T. Fragos 2021
Stripped-envelope supernovae (Type IIb, Ib, Ic) showing little or no hydrogen are one of the main classes of explosions of massive stars. Their origin and the evolution of their progenitors are not fully understood as yet. Very massive single stars s tripped by their own winds ($gtrsim 25-30 M_{odot}$ at solar metallicity) are considered viable progenitors of these events. However, recent 1D core-collapse simulations show that some massive stars may collapse directly onto black holes after a failed explosion, with weak or no visible transient. In this letter, we estimate the effect of direct collapse onto a black hole on the rates of stripped-envelope supernovae that arise from single stars. For this, we compute single star MESA models at solar metallicity and map their final state to their core-collapse outcome following prescriptions commonly used in population synthesis. According to our models, no single stars that have lost their entire hydrogen-rich envelope are able to explode, and only a fraction of progenitors with a thin hydrogen envelope left (IIb progenitor candidates) do, unless we invoke increased wind mass-loss rates. This result increases the existing tension between the single-star scenario for stripped-envelope supernovae and their observed rates and properties. At face value, our results point towards an even higher contribution of binary progenitors for stripped-envelope supernovae. Alternatively, they may suggest inconsistencies in the common practice of mapping different stellar models to core-collapse outcomes and/or higher overall mass loss in massive stars.
121 - S. Saracino 2019
We used high-resolution optical HST/WFC3 and multi-conjugate adaptive optics assisted GEMINI GeMS/GSAOI observations in the near-infrared to investigate the physical properties of the globular cluster NGC 6569 in the Galactic bulge. We have obtained the deepest purely NIR color-magnitude diagram published so far for this cluster using ground-based observations, reaching $K_{s}$ $approx$ 21.0 mag (two magnitudes below the main-sequence turn-off point). By combining the two datasets secured at two different epochs, we determined relative proper motions for a large sample of individual stars in the center of NGC 6569, allowing a robust selection of cluster member stars. Our proper motion analysis solidly demonstrates that, despite its relatively high metal content, NGC 6569 hosts some blue horizontal branch stars. A differential reddening map has been derived in the direction of the system, revealing a maximum color excess variation of about $delta E(B-V)$ $sim$ 0.12 mag in the available field of view. The absolute age of NGC 6569 has been determined for the first time. In agreement with the other few bulge globular clusters with available age estimates, NGC 6569 turns out to be old, with an age of about 12.8 Gyr, and a typical uncertainty of 0.8-1.0 Gyr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا