ترغب بنشر مسار تعليمي؟ اضغط هنا

The intrinsic column density (NH) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z<1, the X-ray spectra can only be reliably characterized using broad-band measurements which extend to energies above 10 keV. Using the hard X-ray observatory NuSTAR, along with archival Chandra and XMM-Newton data, we study the broad-band X-ray spectra of nine optically selected (from the SDSS), candidate Compton-thick (NH > 1.5e24 cm^-2) type 2 quasars (CTQSO2s); five new NuSTAR observations are reported herein, and four have been previously published. The candidate CTQSO2s lie at z<0.5, have observed [OIII] luminosities in the range 8.4 < log (L_[OIII]/L_solar) < 9.6, and show evidence for extreme, Compton-thick absorption when indirect absorption diagnostics are considered. Amongst the nine candidate CTQSO2s, five are detected by NuSTAR in the high energy (8-24 keV) band: two are weakly detected at the ~ 3 sigma confidence level and three are strongly detected with sufficient counts for spectral modeling (>~ 90 net source counts at 8-24 keV). For these NuSTAR-detected sources direct (i.e., X-ray spectral) constraints on the intrinsic AGN properties are feasible, and we measure column densities ~2.5-1600 times higher and intrinsic (unabsorbed) X-ray luminosities ~10-70 times higher than pre-NuSTAR constraints from Chandra and XMM-Newton. Assuming the NuSTAR-detected type 2 quasars are representative of other Compton-thick candidates, we make a correction to the NH distribution for optically selected type 2 quasars as measured by Chandra and XMM-Newton for 39 objects. With this approach, we predict a Compton-thick fraction of f_CT = 36^{+14}_{-12} %, although higher fractions (up to 76%) are possible if indirect absorption diagnostics are assumed to be reliable.
In this study we investigate the relationship between the star formation rate, SFR, and AGN luminosity, L(AGN), for ~2000 X-ray detected AGN. The AGN span over three orders of magnitude in X-ray luminosity (10^(42) < L(2-8keV) < 10^(45.5) erg/s) and are in the redshift range z = 0.2 - 2.5. Using infrared (IR) photometry (8 - 500um), including deblended Spitzer and Herschel images and taking into account photometric upper limits, we decompose the IR spectral energy distributions into AGN and star formation components. Using the IR luminosities due to star formation, we investigate the average SFRs as a function of redshift and AGN luminosity. In agreement with previous studies, we find a strong evolution of the average SFR with redshift, tracking the observed evolution of the overall star forming galaxy population. However, we find that the relationship between the average SFR and AGN luminosity is flat at all redshifts and across all the AGN luminosities investigated; in comparison to previous studies, we find less scatter amongst the average SFRs across the wide range of AGN luminosities investigated. By comparing to empirical models, we argue that the observed flat relationship is due to short timescale variations in AGN luminosity, driven by changes in the mass accretion rate, which wash out any underlying correlations between SFR and L(AGN). Furthermore, we show that the exact form of the predicted relationship between SFR and AGN luminosity (and its normalisation) is highly sensitive to the assumed intrinsic Eddington ratio distribution.
We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z=0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z<1.3. However, their rest-frame 2 keV luminosi ties are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with <45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index ({Gamma}~1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (>33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.
We report NuSTAR observations of NuSTAR J033202-2746.8, a heavily obscured, radio-loud quasar detected in the Extended Chandra Deep Field-South, the deepest layer of the NuSTAR extragalactic survey (~400 ks, at its deepest). NuSTAR J033202-2746.8 is reliably detected by NuSTAR only at E>8 keV and has a very flat spectral slope in the NuSTAR energy band (Gamma=0.55^{+0.62}_{-0.64}; 3-30 keV). Combining the NuSTAR data with extremely deep observations by Chandra and XMM-Newton (4 Ms and 3 Ms, respectively), we constrain the broad-band X-ray spectrum of NuSTAR J033202-2746.8, indicating that this source is a heavily obscured quasar (N_H=5.6^{+0.9}_{-0.8}x10^23 cm^-2) with luminosity L_{10-40 keV}~6.4x10^44 erg s^-1. Although existing optical and near-infrared (near-IR) data, as well as follow-up spectroscopy with the Keck and VLT telescopes, failed to provide a secure redshift identification for NuSTAR J033202-2746.8, we reliably constrain the redshift z=2.00+/-0.04 from the X-ray spectral features (primarily from the iron K edge). The NuSTAR spectrum shows a significant reflection component (R=0.55^{+0.44}_{-0.37}), which was not constrained by previous analyses of Chandra and XMM-Newton data alone. The measured reflection fraction is higher than the R~0 typically observed in bright radio-loud quasars such as NuSTAR J033202-2746.8, which has L_{1.4 GHz}~10^27 W Hz^-1. Constraining the spectral shape of AGN, including bright quasars, is very important for understanding the AGN population, and can have a strong impact on the modeling of the X-ray background. Our results show the importance of NuSTAR in investigating the broad-band spectral properties of quasars out to high redshift.
We present NuSTAR hard X-ray (3-79 keV) observations of three Type 2 quasars at z ~ 0.4-0.5, optically selected from the Sloan Digital Sky Survey (SDSS). Although the quasars show evidence for being heavily obscured Compton-thick systems on the basis of the 2-10 keV to [OIII] luminosity ratio and multiwavelength diagnostics, their X-ray absorbing column densities (N_H) are poorly known. In this analysis: (1) we study X-ray emission at >10 keV, where X-rays from the central black hole are relatively unabsorbed, in order to better constrain N_H; (2) we further characterize the physical properties of the sources through broad-band near-UV to mid-IR spectral energy distribution (SED) analyses. One of the quasars is detected with NuSTAR at >8 keV with a no-source probability of <0.1%, and its X-ray band ratio suggests near Compton-thick absorption with N_H gtrsim 5 x 10^23 cm^-2. The other two quasars are undetected, and have low X-ray to mid-IR luminosity ratios in both the low energy (2-10 keV) and high energy (10-40 keV) X-ray regimes that are consistent with extreme, Compton-thick absorption (N_H gtrsim 10^24 cm^-2). We find that for quasars at z ~ 0.5, NuSTAR provides a significant improvement compared to lower energy (<10 keV) Chandra and XMM-Newton observations alone, as higher column densities can now be directly constrained.
We report on the first ten identifications of sources serendipitously detected by the NuSTAR to provide the first sensitive census of the cosmic X-ray background (CXB) source population at >10 keV. We find that these NuSTAR-detected sources are ~100x fainter than those previously detected at >10 keV and have a broad range in redshift and luminosity (z=0.020-2.923 and L_10-40 keV~4x10^{41}-5x10^{45} erg/s); the median redshift and luminosity are z~0.7 and L_10-40 keV~3x10^{44} erg/s, respectively. We characterize these sources on the basis of broad-band ~0.5-32 keV spectroscopy, optical spectroscopy, and broad-band ultraviolet-to-mid-infrared SED analyzes. We find that the dominant source population is quasars with L_10-40 keV>10^{44} erg/s, of which ~50% are obscured with N_H>10^{22} cm^{-2}. However, none of the ten NuSTAR sources are Compton thick (N_H>10^{24} cm^{-2}) and we place a 90% confidence upper limit on the fraction of Compton-thick quasars (L_10-40 keV>10^{44} erg/s) selected at >10 keV of ~33% over the redshift range z=0.5-1.1. We jointly fitted the rest-frame ~10-40 keV data for all of the non-beamed sources with L_10-40 keV>10^{43} erg/s to constrain the average strength of reflection; we find R<1.4 for Gamma=1.8, broadly consistent with that found for local AGNs observed at >10 keV. We also constrain the host galaxy masses and find a median stellar mass of ~10^{11} M_sun, a factor ~5 times higher than the median stellar mass of nearby high-energy selected AGNs, which may be at least partially driven by the order of magnitude higher X-ray luminosities of the NuSTAR sources. Within the low source-statistic limitations of our study, our results suggest that the overall properties of the NuSTAR sources are broadly similar to those of nearby high-energy selected AGNs but scaled up in luminosity and mass.
We present results from a ~100 ks Chandra observation of the 2QZ Cluster 1004+00 structure at z = 2.23 (hereafter, 2QZ Clus). 2QZ Clus was originally identified as an overdensity of four optically-selected QSOs at z = 2.23 within a 15x15 arcmin^2 reg ion. Narrow-band imaging in the near-IR revealed that the structure contains an additional overdensity of 22 z = 2.23 Halpha-emitting galaxies (HAEs), resulting in 23 unique z = 2.23 HAEs/QSOs. Our Chandra observations reveal that 3 HAEs in addition to the 4 QSOs harbor powerfully accreting supermassive black holes (SMBHs), with 2-10 keV luminosities of ~(8-60) x 10^43 ergs/s and X-ray spectral slopes consistent with unobscured AGN. Using a large comparison sample of 210 HAEs in Chandra-COSMOS (C-COSMOS), we find suggestive evidence that the AGN fraction increases with local HAE galaxy density. The 2QZ Clus HAEs reside in a moderately overdense environment (a factor of ~2 times over the field), and after excluding optically-selected QSOs, we find the AGN fraction is a factor of ~3.5^+3.8_-2.2 times higher than C-COSMOS HAEs in similar environments. Using stacking analyses of the Chandra data and Herschel SPIRE observations at 250 um, we respectively estimate mean SMBH accretion rates (Mdot) and star-formation rates (SFRs) for the 2QZ Clus and C-COSMOS samples. We find that the mean 2QZ Clus HAE stacked 2-10 keV luminosity is QSO-like (~6-10 x 10^43 ergs/s), and the implied Mdot/SFR sim (1.6-3.2) x10^-3 is broadly consistent with the local MBH/M* relation and z ~ 2 X-ray selected AGN. The C-COSMOS HAEs are on average an order of magnitude less X-ray luminous and have Mdot/SFR sim (0.2-0.4) x10^-3, comparable to z ~ 1-2 star-forming galaxies with similar mean X-ray luminosities. We estimate that a periodic QSO phase with duty cycle ~2-8% would be sufficient to bring the star-forming galaxies onto the local MBH/M* relation.
We present here a new spectral energy distribution (SED) fitting approach that we adopt to select radio-excess sources amongst distant star-forming galaxies in the GOODS-Herschel (North) field and to reveal the presence of hidden, highly obscured AGN . Through extensive SED analysis of 458 galaxies with radio 1.4 GHz and mid-IR 24 um detections using some of the deepest Chandra X-ray, Spitzer and Herschel infrared, and VLA radio data available to date, we have robustly identified a sample of 51 radio-excess AGN (~1300 deg^-2) out to redshift z~3. These radio-excess AGN have a significantly lower far-IR/radio ratio (q<1.68) than the typical relation observed for star-forming galaxies (q~2.2). We find that ~45% of these radio-excess sources have a dominant AGN component in the mid-IR band, while for the remainders the excess radio emission is the only indicator of AGN activity. The fraction of radio-excess AGN increases with X-ray luminosity reaching ~60% at Lx~10^44-10^45 erg/s, making these sources an important part of the total AGN population. However, almost half (24/51) of these radio-excess AGN are not detected in the deep Chandra X-ray data, suggesting that some of these sources might be heavily obscured. We also find that the specific star formation rates (sSFRs) of the radio-excess AGN are on average lower that those observed for X-ray selected AGN hosts, indicating that our sources are forming stars more slowly than typical AGN hosts, and possibly their star formation is progressively quenching.
466 - A. D. Goulding 2012
We explore the origin of mid-infrared (mid-IR) dust extinction in all 20 nearby (z < 0.05) bona-fide Compton-thick (N_H > 1.5 x 10^24 cm^-2) AGN with hard energy (E > 10 keV) X-ray spectral measurements. We accurately measure the silicate absorption features at lambda~9.7um in archival low-resolution (R~57-127) Spitzer Infrared Spectrograph (IRS) spectroscopy, and show that only a minority (~45%) of nearby Compton-thick AGN have strong Si-absorption features (S_9.7 = ln(f_{int}/f_{obs}) > 0.5) which would indicate significant dust attenuation. The majority (~60%) are star-formation dominated (AGN:SB<0.5) at mid-IR wavelengths and lack the spectral signatures of AGN activity at optical wavelengths, most likely because the AGN emission-lines are optically-extinguished. Those Compton-thick AGN hosted in low-inclination angle galaxies exhibit a narrow-range in Si-absorption (S_9.7 ~ 0-0.3), which is consistent with that predicted by clumpy-torus models. However, on the basis of the IR spectra and additional lines of evidence, we conclude that the dominant contribution to the observed mid-IR dust extinction is dust located in the host galaxy (i.e., due to disturbed morphologies; dust-lanes; galaxy inclination angles) and not necessarily a compact obscuring torus surrounding the central engine.
We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z~0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a s ubset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the ~4 Ms CDF-S and ~2 Ms CDF-N and z = 0.1-0.6 in the ~250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keV to B-band luminosity ratio (L_X/L_B proportional to [1 + z]^1.2) since z~1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z~1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of ~1.4-2.6 times larger than the average radiative cooling power from hot gas over the redshift range z~0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا