ترغب بنشر مسار تعليمي؟ اضغط هنا

79 - D. Li , Z. J. Ning , 2015
We explore the Quasi-Periodic Pulsations (QPPs) in a solar flare observed by Fermi Gamma-ray Burst Monitor (GBM), Solar Dynamics Observatory (SDO), Solar Terrestrial Relations Observatory (STEREO), and Interface Region Imaging Spectrograph (IRIS) on 2014 September 10. QPPs are identified as the regular and periodic peaks on the rapidly-varying components, which are the light curves after removing the slowly-varying components. The QPPs display only three peaks at the beginning on the hard X-ray (HXR) emissions, but ten peaks on the chromospheric and coronal line emissions, and more than seven peaks (each peak is corresponding to a type III burst on the dynamic spectra) at the radio emissions. An uniform quasi-period about 4 minutes are detected among them. AIA imaging observations exhibit that the 4-min QPPs originate from the flare ribbon, and tend to appear on the ribbon front. IRIS spectral observations show that each peak of the QPPs tends to a broad line width and a red Doppler velocity at C I, O IV, Si IV, and Fe XXI lines. Our findings indicate that the QPPs are produced by the non-thermal electrons which are accelerated by the induced quasi-periodic magnetic reconnections in this flare.
269 - I. Pallecchi , F. Telesio , D. Li 2015
Understanding the nature of charge carriers at the LaAlO3/SrTiO3 interface is one of the major open issues in the full comprehension of the charge confinement phenomenon in oxide heterostructures. Here, we investigate thermopower to study the electro nic structure in LaAlO3/SrTiO3 at low temperature as a function of gate field. In particular, under large negative gate voltage, corresponding to the strongly depleted charge density regime, thermopower displays record-high negative values of the order of 10^4 - 10^5 microV/K, oscillating at regular intervals as a function of the gate voltage. The huge thermopower magnitude can be attributed to the phonon-drag contribution, while the oscillations map the progressive depletion and the Fermi level descent across a dense array of localized states lying at the bottom of the Ti 3d conduction band. This study is the first direct evidence of a localized Anderson tail in the two-dimensional (2D) electron liquid at the LaAlO3/SrTiO3 interface.
94 - A. F^ete , C. Cancellieri , D. Li 2015
We have studied the electronic properties of the 2D electron liquid present at the LaAlO$_3$/SrTiO$_3$ interface in series of samples prepared at different growth temperatures. We observe that interfaces fabricated at 650{deg}C exhibit the highest lo w temperature mobility ($approx 10000 textrm{ cm}^2/textrm{Vs}$) and the lowest sheet carrier density ($approx 5times 10^{12} textrm{ cm}^{-2}$). These samples show metallic behavior and Shubnikov-de Haas oscillations in their magnetoresistance. Samples grown at higher temperatures (800-900{deg}C) display carrier densities in the range of $approx 2-5 times 10^{13} textrm{ cm}^{-2}$ and mobilities of $approx 1000 textrm{ cm}^2/textrm{Vs}$ at 4K. Reducing their carrier density by field effect to $8times 10^{12} textrm{ cm}^{-2}$ lowers their mobilites to $approx 50 textrm{ cm}^2/textrm{Vs}$ bringing the conductance to the weak-localization regime.
93 - K. Liu , S. L. Bi , T. D. Li 2014
The aim of this paper is to determinate the fundamental parameters of six exoplanet host (EH) stars and their planets. While techniques for detecting exoplanets yield properties of the planet only as a function of the properties of the host star, hen ce, we must accurately determine parameters of EH stars at first. For this reason, we constructed a grid of stellar models including diffusion and rotation-induced extra-mixing with given ranges of input parameters (i.e. mass, metallicity, and initial rotation rate). In addition to the commonly used observational constraints such as the effective temperature T_{eff}, luminosity L and metallicity [Fe/H], we added two observational constraints, the lithium abundance log N (Li) and the rotational period P_{rot}. These two additional observed parameters can make further constrains on the model due to their correlations with mass, age and other stellar properties. Hence, our estimations of fundamental parameters for these EH stars and their planets are with higher precision than previous works. Therefore, the combination of rotational period and lithium help us to obtain more accurate parameters for stars, leading to an improvement of the knowledge of the physical state about the EH stars and their planets.
The predictions of the polar catastrophe scenario to explain the occurrence of a metallic interface in heterostructures of the solid solution(LaAlO$_3$)$_{x}$(SrTiO$_3$)$_{1-x}$ (LASTO:x) grown on (001) SrTiO$_3$ were investigated as a function of fi lm thickness and $x$. The films are insulating for the thinnest layers, but above a critical thickness, $t_c$, the interface exhibits a constant finite conductivity which depends in a predictable manner on $x$. It is shown that $t_c$ scales with the strength of the built-in electric field of the polar material, and is immediately understandable in terms of an electronic reconstruction at the nonpolar-polar interface. These results thus conclusively identify the polar-catastrophe model as the intrinsic origin of the doping at this polar oxide interface.
Demonstrating and exploiting the quantum nature of larger, more macroscopic mechanical objects would help us to directly investigate the limitations of quantum-based measurements and quantum information protocols, as well as test long standing questi ons about macroscopic quantum coherence. The field of cavity opto- and electro-mechanics, in which a mechanical oscillator is parametrically coupled to an electromagnetic resonance, provides a practical architecture for the manipulation and detection of motion at the quantum level. Reaching this quantum level requires strong coupling, interaction timescales between the two systems that are faster than the time it takes for energy to be dissipated. By incorporating a free-standing, flexible aluminum membrane into a lumped-element superconducting resonant cavity, we have increased the single photon coupling strength between radio-frequency mechanical motion and resonant microwave photons by more than two orders of magnitude beyond the current state-of-the-art. A parametric drive tone at the difference frequency between the two resonant systems dramatically increases the overall coupling strength. This has allowed us to completely enter the strong coupling regime. This is evidenced by a maximum normal mode splitting of nearly six bare cavity line-widths. Spectroscopic measurements of these dressed states are in excellent quantitative agreement with recent theoretical predictions. The basic architecture presented here provides a feasible path to ground-state cooling and subsequent coherent control and measurement of the quantum states of mechanical motion.
193 - D. Li , X. Li , H. Huang 2009
In Phys. Rev. A 62, 062314 (2000), D{u}r, Vidal and Cirac indicated that there are infinitely many SLOCC classes for four qubits. Verstraete, Dehaene, and Verschelde in Phys. Rev. A 65, 052112 (2002) proposed nine families of states corresponding to nine different ways of entangling four qubits. In Phys. Rev. A 75, 022318 (2007), Lamata et al. reported that there are eight true SLOCC entanglement classes of four qubits up to permutations of the qubits. In this paper, we investigate SLOCC classification of the nine families proposed by Verstraete, Dehaene and Verschelde, and distinguish 49 true SLOCC entanglement classes from them.
226 - D. Li , X. Li , H. Huang 2009
Recently, several schemes for the experimental creation of Dicke states were described. In this paper, we show that all the $n$-qubit symmetric Dicke states with $l$ ($2leq lleq (n-2)$) excitations are inequivalent to the $% |GHZ>$ state or the $|W>$ state under SLOCC, that the even $n$% -qubit symmetric Dicke state with $n/2$ excitations is inequivalent to any even $n$-qubit symmetric Dicke state with $l eq n/2$ excitations under SLOCC, and that all the $n$-qubit symmetric Dicke states with $l$ ($2leq lleq (n-2)$) excitations satisfy Coffman, Kundu and Wootters generalized monogamy inequality $C_{12}^{2}+...+C_{1n}^{2}<C_{1(2...n)}^{2}<1$.
224 - D. Li , X. Li , H. Huang 2009
Recently, Coffman, Kundu, and Wootters introduced the residual entanglement for three qubits to quantify the three-qubit entanglement in Phys. Rev. A 61, 052306 (2000). In Phys. Rev. A 65, 032304 (2007), we defined the residual entanglement for $n$ q ubits, whose values are between 0 and 1. In this paper, we want to show that the residual entanglement for $n$ qubits is a natural measure of entanglement by demonstrating the following properties. (1). It is SL-invariant, especially LU-invariant. (2). It is an entanglement monotone. (3). It is invariant under permutations of the qubits. (4). It vanishes or is multiplicative for product states.
188 - T. velusamy , R. Peng , D. Li 2008
To study the evolution of high mass cores, we have searched for evidence of collapse motions in a large sample of starless cores in the Orion molecular cloud. We used the Caltech Submillimeter Observatory telescope to obtain spectra of the optically thin (H13CO+) and optically thick (HCO+) high density tracer molecules in 27 cores with masses $>$ 1 Ms. The red- and blue-asymmetries seen in the line profiles of the optically thick line with respect to the optically thin line indicate that 2/3 of these cores are not static. We detect evidence for infall (inward motions) in 9 cores and outward motions for 10 cores, suggesting a dichotomy in the kinematic state of the non-static cores in this sample. Our results provide an important observational constraint on the fraction of collapsing (inward motions) versus non-collapsing (re-expanding) cores for comparison with model simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا