ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the experimental observation of the fluctuation-dissipation theorem (FDT) violation in an assembly of interacting magnetic nanoparticles in the low temperature superspin glass phase. The magnetic noise is measured with a two-dimension elec tron gas Hall probe and compared to the out of phase ac susceptibility of the same ferrofluid. For intermediate aging times of the order of 1 h, the ratio of the effective temperature $T_{rm eff}$ to the bath temperature T grows from 1 to 6.5 when T is lowered from $T_g$ to 0.3 $T_g$, regardless of the noise frequency. These values are comparable to those measured in an atomic spin glass as well as those calculated for a Heisenberg spin glass.
We present our first experimental determination of the magnetic noise of a superspinglass made of < 1 pico-liter frozen ferrofluid. The measurements were performed with a local magnetic field sensor based on Hall microprobes operated with the spinnin g current technique. The results obtained, though preliminary, qualitatively agree with the theoretical predictions of Fluctuation-Dissipation theorem (FDT) violation [1].
We present a high sensitivity method allowing the measurement of the non linear dielectric susceptibility of an insulating material at finite frequency. It has been developped for the study of dynamic heterogeneities in supercooled liquids using diel ectric spectroscopy at frequencies 0.05 Hz < f < 30000 Hz . It relies on the measurement of the third harmonics component of the current flowing out of a capacitor. We first show that standard laboratory electronics (amplifiers and voltage sources) nonlinearities lead to limits on the third harmonics measurements that preclude reaching the level needed by our physical goal, a ratio of the third harmonics to the fundamental signal about 7 orders of magnitude lower than 1. We show that reaching such a sensitivity needs a method able to get rid of the nonlinear contributions both of the measuring device (lock-in amplifier) and of the excitation voltage source. A bridge using two sources fulfills only the first of these two requirements, but allows to measure the nonlinearities of the sources. Our final method is based on a bridge with two plane capacitors characterized by different dielectric layer thicknesses. It gets rid of the source and amplifier nonlinearities because in spite of a strong frequency dependence of the capacitors impedance, it is equilibrated at any frequency. We present the first measurements of the physical nonlinear response using our method. Two extensions of the method are suggested.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا