ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Evidence of Fluctuation-Dissipation Theorem Violation in a Superspin Glass

67   0   0.0 ( 0 )
 نشر من قبل Sawako Nakamae
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the experimental observation of the fluctuation-dissipation theorem (FDT) violation in an assembly of interacting magnetic nanoparticles in the low temperature superspin glass phase. The magnetic noise is measured with a two-dimension electron gas Hall probe and compared to the out of phase ac susceptibility of the same ferrofluid. For intermediate aging times of the order of 1 h, the ratio of the effective temperature $T_{rm eff}$ to the bath temperature T grows from 1 to 6.5 when T is lowered from $T_g$ to 0.3 $T_g$, regardless of the noise frequency. These values are comparable to those measured in an atomic spin glass as well as those calculated for a Heisenberg spin glass.

قيم البحث

اقرأ أيضاً

62 - P. E. Jonsson , H. Yoshino , 2004
Effects of temperature changes on the nonequilibrium spin-glass dynamics of a strongly interacting ferromagnetic nanoparticle system (superspin glass) are studied. In contrary to atomic spin glasses, strong cooling rate effects are observed, and no e vidence for temperature-chaos is found. The flip time of a magnetic moment is much longer than that of an atomic spin and hence much shorter time scales are probed within the experimental time window for a superspin glass than for an atomic spin glass. Within a real space picture the cumulative aging observed for the superspin glass can be explained considering that all investigated length scales are shorter than the temperature-chaos overlap length. The transient relaxation, observed in experiments after temperature changes, can be understood as the adjustment of thermally active droplets, which is mutatis mutandis the Kovacs effect observed in most glassy systems.
We examine the Hall conductivity of macroscopic two-dimensional quantum system, and show that the observed quantities can sometimes violate the fluctuation dissipation theorem (FDT), even in the linear response (LR) regime infinitesimally close to eq uilibrium. The violation can be an order of magnitude larger than the Hall conductivity itself at low temperature and in strong magnetic field, which are accessible in experiments. We further extend the results to general systems and give a necessary condition for such large-scale violation to happen. This violation is a genuine quantum phenomenon that appears on a macroscopic scale. Our results are not only bound to the development of the fundamental issues of nonequilibrium physics, but the idea is also meaningful for practical applications, since the FDT is widely used for the estimation of noises from the LRs.
88 - Elie Wandersman 2009
We report on zero field cooled magnetization relaxation experiments on a concen- trated frozen ferrofluid exhibiting a low temperature superspin glass transition. With a method initially developed for spin glasses, we investigate the field dependence of the relaxations that take place after different aging times. We extract the typical number of correlated spins involved in the aging dynamics. This brings important insights into the dynamical correlation length and its time growth. Our results, consistent with expressions obtained for spin glasses, extend the generality of these behaviours to the class of superspin glasses. Since the typical flipping time is much larger for superspins than for atomic spins, our experiments probe a time regime much closer to that of numerical simulations.
The unifying feature of glass formers (such as polymers, supercooled liquids, colloids, granulars, spin glasses, superconductors, ...) is a sluggish dynamics at low temperatures. Indeed, their dynamics is so slow that thermal equilibrium is never rea ched in macroscopic samples: in analogy with living beings, glasses are said to age. Here, we show how to relate experimentally relevant quantities with the experimentally unreachable low-temperature equilibrium phase. We have performed a very accurate computation of the non-equilibrium fluctuation-dissipation ratio for the three-dimensional Edwards-Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. The resulting quantitative statics-dynamics dictionary, based on observables that can be measured with current experimental methods, could allow the experimental exploration of important features of the spin-glass phase without uncontrollable extrapolations to infinite times or system sizes.
233 - P. G. LaBarre , D. Phelan , Y. Xin 2019
We investigate the spin-glass transition in the strongly frustrated well-known compound $Fe_2TiO_5$. A remarkable feature of this transition, widely discussed in the literature, is its anisotropic properties: the transition manifests itself in the ma gnetic susceptibly only along one axis, despite $Fe^{3+}$ $d^5$ spins having no orbital component. We demonstrate, using neutron scattering, that below the transition temperature $T_g = 55 K$, $Fe_2TiO_5$ develops nanoscale surfboard shaped antiferromagnetic regions in which the $Fe^{3+}$ spins are aligned perpendicular to the axis which exhibits freezing. We show that the glass transition may result from the freezing of transverse fluctuations of the magnetization of these regions and we develop a mean-field replica theory of such a transition, revealing a type of magnetic van der Waals effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا