ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the various science cases for building Band 1 receivers as part of ALMAs ongoing Development Program. We describe the new frequency range for Band 1 of 35-52 GHz, a range chosen to maximize the receiver suites scientific impact. We first d escribe two key science drivers: 1) the evolution of grains in protoplanetary disks and debris disks, and 2) molecular gas in galaxies during the era of re-ionization. Studies of these topics with Band 1 receivers will significantly expand ALMAs Level 1 Science Goals. In addition, we describe a host of other exciting continuum and line science cases that require ALMAs high sensitivity and angular resolution. For example, ALMA Band 1 continuum data will probe the Sunyaev-Zeldovich Effect in galaxy clusters, Very Small Grains and spinning dust, ionized jets from young stars, spatial and flaring studies of Sgr A*, the acceleration sites of solar flares, pulsar wind nebulae, radio supernovae, and X-ray binaries. Furthermore, ALMA Band 1 line data will probe chemical differentiation in cloud cores, complex carbon chain molecules, extragalactic radio recombination lines, masers, magnetic fields through Zeeman effect measurements, molecular outflows from young stars, the co-evolution of star formation and active galactic nuclei, and the molecular content of galaxies at z ~ 3. ALMA provides similar to better sensitivities than the JVLA over 35-50 GHz, with differences increasing with frequency. ALMAs smaller antennas and shorter baselines, greater number of baselines, and single-dish capabilities, however, give it a significant edge for observing extended emission, making wide-field maps (mosaics), or attaining high image fidelity, as required by the described science cases.
We present Herschel observations from the Herschel Gould Belt Survey and SCUBA-2 science verification observations from the JCMT Gould Belt Survey of the B1 clump in the Perseus molecular cloud. We determined the dust emissivity index using four diff erent techniques to combine the Herschel PACS+SPIRE data at 160 - 500 microns with the SCUBA-2 data at 450 microns and 850 microns. Of our four techniques, we found the most robust method was to filter-out the large-scale emission in the Herschel bands to match the spatial scales recovered by the SCUBA-2 reduction pipeline. Using this method, we find beta ~ 2 towards the filament region and moderately dense material and lower beta values (beta > 1.6) towards the dense protostellar cores, possibly due to dust grain growth. We find that beta and temperature are more robust with the inclusion of the SCUBA-2 data, improving estimates from Herschel data alone by factors of ~ 2 for beta and by ~ 40% for temperature. Furthermore, we find core mass differences of < 30% compared to Herschel-only estimates with an adopted beta = 2, highlighting the necessity of long wavelength submillimeter data for deriving accurate masses of prestellar and protostellar cores.
We propose an evolutionary path for prestellar cores on the radius-mass diagram, which is analogous to stellar evolutionary paths on the Hertzsprung-Russell Diagram. Using James Clerk Maxwell Telescope (JCMT) observations of L1688 in the Ophiuchus st ar-forming complex, we analyse the HCO+ (J=4rightarrow3) spectral line profiles of prestellar cores. We find that of the 58 cores observed, 14 show signs of infall in the form of a blue-asymmetric double-peaked line profile. These 14 cores all lie beyond the Jeans mass line for the region on a radius-mass plot. Furthermore another 10 cores showing tentative signs of infall, in their spectral line profile shapes, appear on or just over the Jeans mass line. We therefore propose the manner in which a prestellar core evolves across this diagram. We hypothesise that a core is formed in the low-mass, low-radius region of the plot. It then accretes quasistatically, increasing in both mass and radius. When it crosses the limit of gravitational instability it begins to collapse, decreasing in radius, towards the region of the diagram where protostellar cores are seen.
130 - D. Johnstone , M. Fich , C. McCoey 2010
HERSCHEL-HIFI observations of water from the intermediate mass protostar NGC7129 FIRS 2 provide a powerful diagnostic of the physical conditions in this star formation environment. Six spectral settings, covering four H216O and two H218O lines, were observed and all but one H218O line were detected. The four H2 16 O lines discussed here share a similar morphology: a narrower, approx 6 km/s, component centered slightly redward of the systemic velocity of NGC7129 FIRS 2 and a much broader, approx 25 km/s component centered blueward and likely associated with powerful outflows. The narrower components are consistent with emission from water arising in the envelope around the intermediate mass protostar, and the abundance of H2O is constrained to approx 10-7 for the outer envelope. Additionally, the presence of a narrow self-absorption component for the lowest energy lines is likely due to self-absorption from colder water in the outer envelope. The broader component, where the H2O/CO relative abundance is found to be approx 0.2, appears to be tracing the same energetic region that produces strong CO emission at high J.
Aims: We present preliminary results of the first Herschel spectroscopic observations of NGC7129 FIRS2, an intermediate mass star-forming region. We attempt to interpret the observations in the framework of an in-falling spherical envelope. Methods: The PACS instrument was used in line spectroscopy mode (R=1000-5000) with 15 spectral bands between 63 and 185 microns. This provided good detections of 26 spectral lines seen in emission, including lines of H2O, CO, OH, O I, and C II. Results: Most of the detected lines, particularly those of H2O and CO, are substantially stronger than predicted by the spherical envelope models, typically by several orders of magnitude. In this paper we focus on what can be learned from the detected CO emission lines. Conclusions: It is unlikely that the much stronger than expected line emission arises in the (spherical) envelope of the YSO. The region hot enough to produce such high excitation lines within such an envelope is too small to produce the amount of emission observed. Virtually all of this high excitation emission must arise in structures such as as along the walls of the outflow cavity with the emission produced by a combination of UV photon heating and/or non-dissociative shocks.
We present a model for the dispersal of protoplanetary disks by winds from either the central star or the inner disk. These winds obliquely strike the flaring disk surface and strip away disk material by entraining it in an outward radial-moving flow at the wind-disk interface which lies several disk scale heights above the mid-plane. The disk dispersal time depends on the entrainment velocity at which disk material flows into this turbulent shear layer interface. If the entrainment efficiency is ~10% of the local sound speed, a likely upper limit, the dispersal time at 1 AU is ~6 Myr for a disk with a surface density of 10^3 g cm^{-2}, a solar mass central star, and a wind with an outflow rate 10^{-8} Msun/yr and terminal velocity 200 km/s. When compared to photoevaporation and viscous evolution, wind stripping can be a dominant mechanism only for the combination of low accretion rates (< 10^{-8} Msun/yr) and wind outflow rates approaching these accretion rates. This case is unusual since generally outflow rates are < 0.1 of of accretion rates.
Context: IRAS 04166+2706 in Taurus is one of the most nearby young stellar objects whose molecular outflow contains a highly collimated fast component. Methods: We have observed the IRAS 04166+2706 outflow with the IRAM Plateau de Bure interferomet er in CO(J=2-1) and SiO(J=2-1) achieving angular resolutions between 2 and 4. To improve the quality of the CO(2-1) images, we have added single dish data to the interferometer visibilities. Results: The outflow consists of two distinct components. At velocities <10 km/s, the gas forms two opposed, approximately conical shells that have the YSO at their vertex. These shells coincide with the walls of evacuated cavities and seem to result from the acceleration of the ambient gas by a wide-angle wind. At velocities >30 km/s, the gas forms two opposed jets that travel along the center of the cavities and whose emission is dominated by a symmetric collection of at least 7 pairs of peaks. The velocity field of this component presents a sawtooth pattern with the gas in the tail of each peak moving faster than the gas in the head. This pattern, together with a systematic widening of the peaks with distance to the central source, is consistent with the emission arising from internal working surfaces traveling along the jet and resulting from variations in the velocity field of ejection. We interpret this component as the true protostellar wind, and we find its composition consistent with a chemical model of such type of wind. Conclusions: Our results support outflow wind models that have simultaneously wide-angle and narrow components, and suggest that the EHV peaks seen in a number of outflows consist of internally-shocked wind material.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا