ترغب بنشر مسار تعليمي؟ اضغط هنا

We present low-temperature measurements of the low-frequency $1/f$ noise arising from an ensemble of two-level fluctuators in the oxide barrier of Al/AlO$_{x}$/Al Josephson junctions. The fractional noise power spectrum of the critical-current and no rmal-state resistance have similar magnitudes and scale linearly with temperature, implying an equivalence between the two. Compiling our results and published data, we deduce the area and temperature scaling of the noise for AlO$_{x}$ barrier junctions. We find that the density of two-level fluctuators in the junction barrier is similar to the typical value in glassy systems. We discuss the implications and consistency with recent qubit experiments.
We report on sub-gap transport measurements of an InAs nanowire coupled to niobium nitride leads at high magnetic fields. We observe a zero-bias anomaly (ZBA) in the differential conductance of the nanowire for certain ranges of magnetic field and ch emical potential. The ZBA can oscillate in width with either magnetic field or chemical potential; it can even split and reform. We discuss how our results relate to recent predictions of hybridizing Majorana fermions in semiconducting nanowires, while considering more mundane explanations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا