ترغب بنشر مسار تعليمي؟ اضغط هنا

109 - Y. Matsuda , T. Nagao , D. Iono 2015
We present a result of a blind search for [CII] 158 $mu$m emitters at $zsim 4.5$ using ALMA Cycle~0 archival data. We collected extra-galactic data covering at 330-360 GHz (band~7) from 8 Cycle~0 projects from which initial results have been already published. The total number of fields is 243 and the total on-source exposure time is 19.2 hours. We searched for line emitters in continuum-subtracted data cubes with spectral resolutions of 50, 100, 300 and 500 km/s. We could not detect any new line emitters above a 6-$sigma$ significance level. This result provides upper limits to the [CII] luminosity function at $zsim 4.5$ over $L_{rm [CII]} sim 10^8 - 10^{10} L_{odot}$ or star formation rate, SFR $sim$ 10-1000 M$_{^odot}$/yr. These limits are at least 2 orders of magnitude larger than the [CII] luminosity functions expected from the $z sim 4$ UV luminosity function or from numerical simulation. However, this study demonstrates that we would be able to better constrain the [CII] luminosity function and to investigate possible contributions from dusty galaxies to the cosmic star-formation rate density by collecting Cycle~1+2 archival data as the ALMA Patchy Deep Survey.
73 - D. Iono , T. Saito , M. S. Yun 2013
High resolution (0.4 arcsec) Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 0 observations of HCO+(4-3) and HCN(4-3) toward a mid-stage infrared bright merger VV114 have revealed compact nuclear (<200 pc) and extended (3 - 4 kpc) dense gas distribution across the eastern part of the galaxy pair. We find a significant enhancement of HCN(4-3) emission in an unresolved compact and broad (290km/s) component found in the eastern nucleus of VV114, and we suggest dense gas associated with the surrounding material around an Active Galactic Nucleus (AGN), with a mass upper limit of < 4 x 10^8 Msun. The extended dense gas is distributed along a filamentary structure with resolved dense gas concentrations (230pc; 10^6 Msun) separated by a mean projected distance of 600 pc, many of which are generally consistent with the location of star formation traced in Pa alpha emission. Radiative transfer calculations suggest moderately dense (10^5 - 10^6 cm^-3) gas averaged over the entire emission region. These new ALMA observations demonstrate the strength of the dense gas tracers in identifying both the AGN and star formation activity in a galaxy merger, even in the most dust enshrouded environments in the local universe.
206 - Y. Tamura , D. Iono , D. J. Wilner 2010
We present results from Submillimeter Array (SMA) 860-micron sub-arcsec astrometry and multiwavelength observations of the brightest millimeter (S_1.1mm = 8.4 mJy) source, SSA22-AzTEC1, found near the core of the SSA22 protocluster that is traced by Lyalpha emitting galaxies at z = 3.09. We identify a 860-micron counterpart with a flux density of S_860um = 12.2 +/- 2.3 mJy and absolute positional accuracy that is better than 0.3. At the SMA position, we find radio to mid-infrared counterparts, whilst no object is found in Subaru optical and near-infrared deep images at wavelengths le 1 micron (J > 25.4 in AB, 2sigma). The photometric redshift estimate, using flux densities at ge 24 microns, indicates z_phot = 3.19^{+0.26}_{-0.35}, consistent with the protocluster redshift. We then model the near-to-mid-infrared spectral energy distribution (SED) of SSA22-AzTEC1, and find that the SED modeling requires a large extinction (A_V approx 3.4 mag) of starlight from a stellar component with M_star ~ 10^{10.9} M_sun, assuming z = 3.1. Additionally, we find a significant X-ray counterpart with a very hard spectrum (Gamma_eff = -0.34 ^{+0.57}_{-0.61}), strongly suggesting that SSA22-AzTEC1 harbors a luminous AGN (L_X ~ 3*10^{44} ergs s^{-1}) behind a large hydrogen column (N_H ~ 10^{24} cm^{-2}). The AGN, however, is responsible for only ~10% of the bolometric luminosity of the host galaxy, and therefore the star-formation activity likely dominates the submillimeter emission. It is possible that SSA22-AzTEC1 is the first example of a protoquasar growing at the bottom of the gravitational potential underlying the SSA22 protocluster.
53 - Y. Matsuda 2007
We present ~2 resolution submillimeter observations of the submillimeter luminous giant Ly-alpha blob (LAB1) in the SSA 22 protocluster at redshift z=3.1 with the Submillimeter Array (SMA). Although the expected submillimeter flux density is 16 mJy a t 880 micron, no emission is detected with the 2.4 x 1.9 (18 x 14 kpc) beam at the 3 sigma level of 4.2 mJy beam^{-1} in the SMA field of view of 35. This is in contrast to the previous lower angular resolution (15) observations where a bright (17 mJy) unresolved submillimeter source was detected at 850 micron toward the LAB1 using the Submillimeter Common-User Bolometer Array on the James Clerk Maxwell Telescope. The SMA non-detection suggests that the spatial extent of the submillimeter emission of LAB1 should be larger than 4 (>30 kpc). The most likely interpretation of the spatially extended submillimeter emission is that starbursts occur throughout the large area in LAB1. Some part of the submillimeter emission may come from spatially extended dust expelled from starburst regions by galactic superwind. The spatial extent of the submillimeter emission of LAB1 is similar to those of high redshift radio galaxies rather than submillimeter galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا