ترغب بنشر مسار تعليمي؟ اضغط هنا

108 - D. Glavan 2015
We evaluate the one-graviton loop contribution to the vacuum polarization on de Sitter background in a 1-parameter family of exact, de Sitter invariant gauges. Our result is computed using dimensional regularization and fully renormalized with BPHZ c ounterterms, which must include a noninvariant owing to the time-ordered interactions. Because the graviton propagator engenders a physical breaking of de Sitter invariance two structure functions are needed to express the result. In addition to its relevance for the gauge issue this is the first time a covariant gauge graviton propagator has been used to compute a noncoincident loop. A number of identities are derived which should facilitate further graviton loop computations.
We consider the late time one-loop quantum backreaction from inflationary fluctuations of a non-minimally coupled, massless scalar field. The scalar is assumed to be a spectator field in an inflationary model with a constant principal slow roll $epsi lon$ parameter. We regulate the infrared by matching onto a pre-inflationary radiation era. We find a large late time backreaction when the nonminimal coupling $xi$ is negative (in which case the scalar exhibits a negative mass term during inflation). The one-loop quantum backreaction becomes significant today for moderately small non-minimal couplings, $xisim -1/20$, and it changes sign (from negative to positive) at a recent epoch when inflation lasts not much longer than what is minimally required, $N gtrsim 66$. Since currently we do not have a way of treating the classical fluid and the quantum backreaction in a self-consistent manner, we cannot say decidely whether the backreaction from inflationary quantum fluctuations of a non-minimally coupled scalar can mimic dark energy.
103 - D. Glavan 2013
We calculate the one-loop corrections from inflationary gravitons to the electromagnetic fields of a point charge and a point magnetic dipole on a locally de Sitter space background. Results are obtained both for an observer at rest in co-moving coor dinates, whose physical distance from the sources increases with the expanding universe, and for an observer at rest in static coordinates, whose physical distance from the sources is constant. The fields of both sources show the de Sitter analogs of the fractional $G/r^2$ corrections which occur in flat space, but there are also some fractional $G H^2$ corrections due to the scattering of virtual photons from the vast ensemble of infrared gravitons produced by inflation. The co-moving observer perceives the magnitude of the point charge to increase linearly with co-moving time and logarithmically with the co-moving position, however, the magnetic dipole shows only a negative logarithmic spatial variation. The static observer perceives no secular change of the point charge but he does report a secular enhancement of the magnetic dipole moment.
As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy densi ty for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا