ترغب بنشر مسار تعليمي؟ اضغط هنا

323 - D. Fabjan , S. Borgani , E. Rasia 2011
We present a detailed study of scaling relations between total cluster mass and three mass proxies based on X-ray observables: temperature of the intra-cluster medium, gas mass and the product of the two, Y_X. Our analysis is based on two sets of hig h-resolution hydrodynamical simulations performed with the TreePM-SPH GADGET code. The first set includes about 140 clusters with masses above 5x10^13 M_sun/h (30 having mass above 10^15 M_sun/h), that have been simulated with (i) non-radiative physics and including (ii) cooling, star formation, chemical enrichment and the effect of supernova feedback triggering galactic ejecta. This large statistics is used to quantify the robustness of the scaling relations, to determine their redshift evolution and to calibrate their intrinsic scatter and its distribution. We use a smaller set of clusters including 18 halos with masses above 5x10^13 M_sun/h to test the robustness of mass proxies against changing the physical processes included in simulations (thermal conduction, artificial viscosity, cooling and star formation, galactic winds and AGN feedback). We find the M-Y_X scaling relation to be the least sensitive one to variations of the ICM physics, with its slope and redshift evolution close to the self-similar model predictions. The distribution of the scatter around the best-fitting relations is close to a log-normal one. M_gas has the smallest scatter in mass, with values of sigma_lnM = 0.04-0.06, depending on the physics included in the simulation, and with a mild dependence on redshift. The M-T relation is the one with the largest scatter, with sigma_lnM > 0.1 at z=0, increasing to > 0.15 at z=1. The intrinsic scatter in the M-Y_X relation is slightly larger than in the M-M_gas relation. These results confirm that both Y_X and M_gas mass proxies are well suited for cosmological applications of future large X-ray surveys. [abridged]
We present a study of the effect of AGN feedback on metal enrichment and thermal properties of the intracluster medium (ICM) in hydrodynamical simulations. The cosmological simulations are performed for a set of clusters using a version of the TreePM -SPH Gadget code that follows chemo-dynamical evolution by accounting for metal enrichment by different stellar populations. Besides runs not including any efficient form of energy feedback, we carry out simulations including: (i) kinetic feedback in the form of galactic winds triggered by supernova explosions; (ii) AGN feedback from gas accretion onto super-massive black holes (BHs); (iii) AGN feedback in which a radio mode is included. We find that AGN feedback is able to quench star formation in the brightest cluster galaxies at z<4 and provides correct temperature profiles in the central regions of galaxy groups. However, its effect is not sufficient to create cool cores in massive clusters. AGN feedback creates a widespread enrichment in the outskirts of clusters, thanks to its efficiency in displacing enriched gas from galactic halos to the inter-galactic medium at relatively high redshift. Iron abundance profiles are in better agreement with observations, with a more pristine enrichment of the ICM around and beyond the cluster virial regions. From the pattern of the relative abundances of Silicon and Iron, we conclude that a significant fraction of ICM enrichment in simulations is contributed by a diffuse population of intra-cluster stars. Our simulations also predict that profiles of Z_Si/Z_Fe abundance ratio do not increase at least out to 0.5 R_vir. Our results clearly show that different sources of energy feedback leave distinct imprints in the enrichment pattern of the ICM, that are more evident when looking at cluster external regions.
We present a comparison between simulation results and X-ray observational data on the evolution of the metallicity of the intra-cluster medium (ICM). The simulations of galaxy clusters were performed with the Tree-SPH Gadget2 code that includes a de tailed model of chemical evolution, by assuming three different shapes for the stellar initial mass function (IMF), namely the Salpeter (1955), Kroupa (2001) and Arimoto-Yoshii (1987) IMF. Our simulations predict significant radial gradients of the Iron abundance, which extend over the whole cluster virialized region. At larger radii, we do not detect any flattening of the metallicity profiles. As for the evolution of the ICM metal (Iron) abundance out to z=1, we find that it is determined by the combined action of (i) the sinking of already enriched gas, (ii) the ongoing metal production in galaxies and (iii) the locking of ICM metals in newborn stars. As a result, rather than suppressing the metallicity evolution, stopping star formation at z=1 has the effect of producing an even too fast evolution of the emission-weighted ICM metallicity with too high values at low redshift. Finally, we compare simulations with the observed rate of type-Ia supernovae per unit B-band luminosity (SnU_B). We find that our simulated clusters do not reproduce the decreasing trend of SnU_B at low redshift, unless star formation is truncated at z=1.
The study of the metal enrichment of the intra-cluster and inter-galactic media (ICM and IGM) represents a direct means to reconstruct the past history of star formation, the role of feedback processes and the gas-dynamical processes which determine the evolution of the cosmic baryons. In this paper we review the approaches that have been followed so far to model the enrichment of the ICM in a cosmological context. While our presentation will be focused on the role played by hydrodynamical simulations, we will also discuss other approaches based on semi-analytical models of galaxy formation, also critically discussing pros and cons of the different methods. We will first review the concept of the model of chemical evolution to be implemented in any chemo-dynamical description. We will emphasise how the predictions of this model critically depend on the choice of the stellar initial mass function, on the stellar life-times and on the stellar yields. We will then overview the comparisons presented so far between X-ray observations of the ICM enrichment and model predictions. We will show how the most recent chemo-dynamical models are able to capture the basic features of the observed metal content of the ICM and its evolution. We will conclude by highlighting the open questions in this study and the direction of improvements for cosmological chemo-dynamical models of the next generation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا