ترغب بنشر مسار تعليمي؟ اضغط هنا

177 - E. Agliari , R. Burioni , D. Cassi 2008
We introduce a diffusion model for energetically inhomogeneous systems. A random walker moves on a spin-S Ising configuration, which generates the energy landscape on the lattice through the nearest-neighbors interaction. The underlying energetic env ironment is also made dynamic by properly coupling the walker with the spin lattice. In fact, while the walker hops across nearest-neighbor sites, it can flip the pertaining spins, realizing a diffusive dynamics for the Ising system. As a result, the walk is biased towards high energy regions, namely the boundaries between clusters. Besides, the coupling introduced involves, with respect the ordinary diffusion laws, interesting corrections depending on either the temperature and the spin magnitude. In particular, they provide a further signature of the phase-transition occurring on the magnetic lattice.
We introduce an alternative thermal diffusive dynamics for the spin-S Ising ferromagnet realized by means of a random walker. The latter hops across the sites of the lattice and flips the relevant spins according to a probability depending on both th e local magnetic arrangement and the temperature. The random walker, intended to model a diffusing excitation, interacts with the lattice so that it is biased towards those sites where it can achieve an energy gain. In order to adapt our algorithm to systems made up of arbitrary spins, some non trivial generalizations are implied. In particular, we will apply the new dynamics to two-dimensional spin-1/2 and spin-1 systems analyzing their relaxation and critical behavior. Some interesting differences with respect to canonical results are found; moreover, by comparing the outcomes from the examined cases, we will point out their main features, possibly extending the results to spin-S systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا