ترغب بنشر مسار تعليمي؟ اضغط هنا

66 - G. Ghirlanda 2014
Orphan Afterglows (OA) are slow transients produced by Gamma Ray Bursts seen off-axis that become visible on timescales of days/years at optical/NIR and radio frequencies, when the prompt emission at high energies (X and gamma rays) has already cease d. Given the typically estimated jet opening angle of GRBs theta_jet ~ 3 deg, for each burst pointing to the Earth there should be a factor ~ 700 more GRBs pointing in other directions. Despite this, no secure OAs have been detected so far. Through a population synthesis code we study the emission properties of the population of OA at radio frequencies. OAs reach their emission peak on year-timescales and they last for a comparable amount of time. The typical peak fluxes (which depend on the observing frequency) are of few micro Jy in the radio band with only a few OA reaching the mJy level. These values are consistent with the upper limits on the radio flux of SN Ib/c observed at late times. We find that the OA radio number count distribution has a typical slope -1.7 at high fluxes and a flatter (-0.4) slope at low fluxes with a break at a frequency-dependent flux. Our predictions of the OA rates are consistent with the (upper) limits of recent radio surveys and archive searches for radio transients. Future radio surveys like VAST/ASKAP at 1.4 GHz should detect ~ 3x10^-3 OA deg^-2 yr-1, MeerKAT and EVLA at 8.4 GHz should see ~ 3x10^-1 OA deg-2 yr-1. The SKA, reaching the micro Jy flux limit, could see up to ~ 0.2-1.5 OA deg^-2 yr^-1. These rates also depend on the duration of the OA above a certain flux limit and we discuss this effect with respect to the survey cadence.
Radio observations of Gamma Ray Bursts afterglows are fundamental in providing insights into their physics and environment, and in constraining the true energetics of these sources. Nonetheless, radio observations of GRB afterglows are presently spar se in the time/frequency domain. Starting from a complete sample of 58 bright Swift long bursts (BAT6), we constructed a homogeneous sub-sample of 38 radio detections/upper limits which preserves all the properties of the parent sample. One half of the bursts have detections between 1 and 5 days after the explosion with typical fluxes F>100 muJy at 8.4 GHz. Through a Population SYnthesis Code coupled with the standard afterglow Hydrodynamical Emission model (PSYCHE) we reproduce the radio flux distribution of the radio sub-sample. Based on these results we study the detectability in the time/frequency domain of the entire long GRB population by present and future radio facilities. We find that the GRBs that typically trigger Swift can be detected at 8.4 GHz by JVLA within few days with modest exposures even at high redshifts. The final SKA can potentially observe the whole GRB population provided that there will be a dedicated GRB gamma-ray detector more sensitive than Swift. For a sizable fraction (50%) of these bursts, SKA will allow us to perform radio-calorimetry, after the trans-relativistic transition (occurring ~100 d), providing an estimate of the true (collimation corrected) energetics of GRBs.
We present the clustering measurement of hard X-ray selected AGN in the local Universe. We used a sample of 199 sources spectroscopically confirmed detected by Swift-BAT in its 15-55 keV all-sky survey. We measured the real space projected auto-corre lation function and detected a signal significant on projected scales lower than 200 Mpc/h. We measured a correlation length of r0=5.56+0.49-0.43 Mpc/h and a slope {gamma}=1.64-0.08 -0.07. We also measured the auto-correlation function of Type I and Type II AGN and found higher correlation length for Type I AGN. We have a marginal evidence of luminosity dependent clustering of AGN, as we detected a larger correlation length of luminous AGN than that of low luminosity sources. The corresponding typical host DM halo masses of Swift-BAT are log(MDMH) 12-14 h^-1 M/M_sun, depending on the subsample. For the whole sample we measured log(MDMH)sim 13.15 h-1 M/M_sun which is the typical mass of a galaxy group. We estimated that the local AGN population has a typical lifetime tau_AGN sim 0.7 Gyr, it is powered by SMBH with mass MBH sim 1-10x10^8 M_odot and accreting with very low efficiency, log(epsilon)-2.0. We also conclude that local AGN host galaxies are typically red-massive galaxies with stellar mass of the order 2-80x10^10 h^-1 M_sun. We compared our results with clustering predictions of merger-driven AGN triggering models and found a good agreement.
56 - D. Burlon 2008
We study a sample of Gamma-Ray Bursts detected by the Swift satellite with known redshift which show a precursor in the Swift-BAT light curve. We analyze the spectra of the precursors and compare them with the time integrated spectra of the prompt em ission. We find neither a correlation between the two slopes nor a tendency for the precursors spectra to be systematically harder or softer than the prompt ones. The energetics of the precursors are large: on average, they are just a factor of a few less energetic (in the source rest frame energy range 15-150 keV) than the entire bursts. These properties do not depend upon the quiescent time between the end of the precursor and the start of the main event. These results suggest that what has been called a precursor is not a phenomenon distinct from the main event, but is tightly connected with it, even if, in some case, the quiescent time intervals can be longer than 100 seconds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا