ﻻ يوجد ملخص باللغة العربية
Radio observations of Gamma Ray Bursts afterglows are fundamental in providing insights into their physics and environment, and in constraining the true energetics of these sources. Nonetheless, radio observations of GRB afterglows are presently sparse in the time/frequency domain. Starting from a complete sample of 58 bright Swift long bursts (BAT6), we constructed a homogeneous sub-sample of 38 radio detections/upper limits which preserves all the properties of the parent sample. One half of the bursts have detections between 1 and 5 days after the explosion with typical fluxes F>100 muJy at 8.4 GHz. Through a Population SYnthesis Code coupled with the standard afterglow Hydrodynamical Emission model (PSYCHE) we reproduce the radio flux distribution of the radio sub-sample. Based on these results we study the detectability in the time/frequency domain of the entire long GRB population by present and future radio facilities. We find that the GRBs that typically trigger Swift can be detected at 8.4 GHz by JVLA within few days with modest exposures even at high redshifts. The final SKA can potentially observe the whole GRB population provided that there will be a dedicated GRB gamma-ray detector more sensitive than Swift. For a sizable fraction (50%) of these bursts, SKA will allow us to perform radio-calorimetry, after the trans-relativistic transition (occurring ~100 d), providing an estimate of the true (collimation corrected) energetics of GRBs.
Starting from the Swift sample we define a complete sub-sample of 58 bright long Gamma Ray Bursts (GRB), 55 of them (95%) with a redshift determination, in order to characterize their properties. Our sample (BAT6) allows us to study the properties of
We use a nearly complete sample of Gamma Ray Bursts (GRBs) detected by the Swift satellite to study the correlations between the spectral peak energy Ep of the prompt emission, the isotropic energetics Eiso and the isotropic luminosity Liso. This GRB
We study the properties of the population of optically dark events present in a carefully selected complete sample of bright Swift long gamma-ray bursts. The high level of completeness in redshift of our sample (52 objects out of 58) allow us to esta
We present a carefully selected sub-sample of Swift Long Gamma-ray Bursts (GRBs), that is complete in redshift. The sample is constructed by considering only bursts with favorable observing conditions for ground-based follow-up searches, that are bri
The universal link between the processes of accretion and ejection leads to the formation of jets and outflows around accreting compact objects. Incoherent synchrotron emission from these outflows can be observed from a wide range of accreting binari