ترغب بنشر مسار تعليمي؟ اضغط هنا

A spectral survey in the 1 mm wavelength range was undertaken in the long-period comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy) using the 30 m telescope of the Institut de radioastronomie millimetrique (IRAM) in April and November-December 2013. W e report the detection of ethylene glycol (CH$_2$OH)$_2$ (aGg conformer) and formamide (NH$_2$CHO) in the two comets. The abundances relative to water of ethylene glycol and formamide are 0.2-0.3% and 0.02% in the two comets, similar to the values measured in comet C/1995 O1 (Hale-Bopp). We also report the detection of HCOOH and CH$_3$CHO in comet C/2013 R1 (Lovejoy), and a search for other complex species (methyl formate, glycolaldehyde).
We aimed to measure the H2O and dust production rates in C/2006 W3 (Christensen) with the Herschel Space Observatory at a heliocentric distance of ~ 5 AU. We have searched for emission in the H2O and NH3 ground-state rotational transitions at 557 GHz and 572 GHz, simultaneously, with HIFI onboard Herschel on UT 1.5 September 2010. Photometric observations of the dust coma in the 70 and 160 {mu}m channels were acquired with the PACS instrument on UT 26.5 August 2010. A tentative 4-{sigma} H2O line emission feature was found in the spectra obtained with the HIFI wide-band and high-resolution spectrometers, from which we derive a water production rate of $2.0(5) times 10^{27}$ molec. s$^{-1}$. A 3-{sigma} upper limit for the ammonia production rate of <$1.5 times 10^{27}$ molec. s$^{-1}$ is obtained taking into account the contribution from all hyperfine components. The blueshift of the water line detected by HIFI suggests preferential emission from the subsolar point. However, it is also possible that water sublimation occurs in small ice-bearing grains that are emitted from an active region on the nucleus surface at a speed of ~ 0.2 km s$^{-1}$. The dust thermal emission was detected in the 70 and 160 {mu}m filters, with a more extended emission in the blue channel. The dust production rates, obtained for a dust size distribution index that explains the fluxes at the photocenters of the PACS images, lie in the range 70-110 kg s$^{-1}$. Scaling the CO production rate measured post-perihelion at 3.20 and 3.32 AU, these values correspond to a dust-to-gas production rate ratio in the range 0.3-0.4. The dust production rates derived in August 2010 are roughly one order of magnitude lower than in September 2009, suggesting that the dust-to-gas production rate ratio remained approximately constant during the period when the activity became increasingly dominated by CO outgassing.
HCl and HF are expected to be the main reservoirs of fluorine and chlorine wherever hydrogen is predominantly molecular. They are found to be strongly depleted in dense molecular clouds, suggesting freeze-out onto grains in such cold environments. We can then expect that HCl and HF were also the major carriers of Cl and F in the gas and icy phases of the outer solar nebula, and were incorporated into comets. We aimed to measure the HCl and HF abundances in cometary ices as they can provide insights on the halogen chemistry in the early solar nebula. We searched for the J(1-0) lines of HCl and HF at 626 and 1232 GHz, respectively, using the HIFI instrument on board the Herschel Space Observatory. HCl was searched for in comets 103P/Hartley 2 and C/2009 P1 (Garradd), whereas observations of HF were conducted in comet C/2009 P1. In addition, observations of H$_2$O and H$_2^{18}$O lines were performed in C/2009 P1 to measure the H$_2$O production rate. Three lines of CH$_3$OH were serendipitously observed in the HCl receiver setting. HCl is not detected, whereas a marginal (3.6-$sigma$) detection of HF is obtained. The upper limits for the HCl abundance relative to water are 0.011% and 0.022%, for 103P and C/2009 P1, respectively, showing that HCl is depleted with respect to the solar Cl/O abundance by a factor more than 6$^{+6}_{-3}$ in 103P, where the error is related to the uncertainty in the chlorine solar abundance. The marginal HF detection obtained in C/2009 P1 corresponds to an HF abundance relative to water of (1.8$pm$0.5) $times$ 10$^{-4}$, which is approximately consistent with a solar photospheric F/O abundance. The observed depletion of HCl suggests that HCl was not the main reservoir of chlorine in the regions of the solar nebula where these comets formed. HF was possibly the main fluorine compound in the gas phase of the outer solar nebula.
Our goal was to characterize the distant gaseous and dust activity of comet C2012 S1 (ISON), inbound, from observations of H2O, CO and the dust coma in the far-infrared and submillimeter domains. In this paper, we report observations undertaken with the Herschel Space Observatory on 8 & 13 March 2013 (rh = 4.54 - 4.47AU) and with the 30m telescope of Institut de Radioastronomie Millimetrique (IRAM) in March and April 2013 (rh = 4.45 - 4.18 AU). The HIFI instrument aboard Herschel was used to observe the H$_{2}$O $1_{10}-1_{01}$ line at 557 GHz, whereas images of the dust coma at 70 and 160 {mu}m were acquired with the PACS instrument. Spectra acquired at the IRAM 30m telescope cover the CO J(2-1) line at 230.5 GHz. The spectral observations were analysed with excitation and radiative transfer models. A model of dust thermal emission taking into account a range of dust sizes is used to analyse the PACS maps. While H$_{2}$O was not detected in our 8 March 2013 observation, we derive a sensitive 3 $sigma$ upper limit of QH$_{2}$O < 3.5 x 10$^{26}$ molecules/s for this date. A marginal 3.2 $sigma$ detection of CO is found, corresponding to a CO production rate of QCO = 3.5 x 10$^{27}$ molecules/s. The Herschel PACS measurements show a clear detection of the coma and tail in both the 70 {mu}m and 160 {mu}m maps. Under the assumption of a 2 km radius nucleus, we infer dust production rates in the range 10 - 13 kg/s or 40 - 70 kg/s depending on whether a low or high gaseous activity from the nucleus surface is assumed. We constrain the size distribution of the emitted dust by comparing PACS 70 and 160 {mu}m data, and considering optical data. Size indices between -4 and -3.6 are suggested. The morphology of the tail observed on 70 {mu}m images can be explained by the presence of grains with ages older than 60 days.
We present Herschel observations of water isotopologues in the atmosphere of the Jupiter-family comet 45P/Honda-Mrkos-Pajdusakova. No HDO emission is detected, with a 3 sigma upper limit of 2.0 10-4 for the D/H ratio. This value is consistent with th e earlier Herschel measurement in the Jupiter-family comet 103P/Hartley 2. The canonical value of 3 10-4 measured pre-Herschel in a sample of Oort-cloud comets can be excluded at a 4.5 sigma level. The observations presented here further confirm that a diversity of D/H ratios exists in the comet population and emphasize the need for additional measurements with future ground-based facilities, such as CCAT, in the post-Herschel era.
The D/H ratio in cometary water is believed to be an important indicator of the conditions under which icy planetesimals formed and can provide clues to the contribution of comets to the delivery of water and other volatiles to Earth. Available measu rements suggest that there is isotopic diversity in the comet population. The Herschel Space Observatory revealed an ocean-like ratio in the Jupiter-family comet 103P/Hartley 2, whereas most values measured in Oort-cloud comets are twice as high as the ocean D/H ratio. We present here a new measurement of the D/H ratio in the water of an Oort-cloud comet. HDO, H_2O, and H_2^18O lines were observed with high signal-to-noise ratio in comet C/2009 P1 (Garradd) using the Herschel HIFI instrument. Spectral maps of two water lines were obtained to constrain the water excitation. The D/H ratio derived from the measured H_2^16O and HDO production rates is 2.06+/-0.22 X 10**-4. This result shows that the D/H in the water of Oort-cloud comets is not as high as previously thought, at least for a fraction of the population, hence the paradigm of a single, archetypal D/H ratio for all Oort-cloud comets is no longer tenable. Nevertheless, the value measured in C/2009 P1 (Garradd) is significantly higher than the Earths ocean value of 1.558 X 10**-4. The measured H_2^16O/H_2^18O ratio of 523+/-32 is, however, consistent with the terrestrial value.
A fundamental question in cometary science is whether the different dynamical classes of comets have different chemical compositions, which would reflect different initial conditions. From the ground or Earth orbit, radio and infrared spectroscopic o bservations of a now significant sample of comets indeed reveal deep differences in the relative abundances of cometary ices. However, no obvious correlation with dynamical classes is found. Further results come, or are expected, from space exploration. Such investigations, by nature limited to a small number of objects, are unfortunately focussed on short-period comets (mainly Jupiter-family). But these in situ studies provide ground truth for remote sensing. We discuss the chemical differences in comets from our database of spectroscopic radio observations, which has been recently enriched by several Jupiter-family and Halley-type comets.
Radio observations from decimetric to submillimetric wavelengths are now a basic tool for the investigation of comets. Spectroscopic observations allow us i) to monitor the gas production rate of the comets, by directly observing the water molecule, or by observing secondary products (e.g., the OH radical) or minor species (e.g., HCN); ii) to investigate the chemical composition of comets; iii) to probe the physical conditions of cometary atmospheres: kinetic temperature and expansion velocity. Continuum observations probe large-size dust particles and (for the largest objects) cometary nuclei. Comets are classified from their orbital characteristics into two separate classes: i) nearly-isotropic, mainly long-period comets and ii) ecliptic, short-period comets, the so-called Jupiter-family comets. These two classes apparently come from two different reservoirs, respectively the Oort cloud and the trans-Neptunian scattered disc. Due to their different history and - possibly - their different origin, they may have different chemical and physical properties that are worth being investigated. The present article reviews the contribution of radio observations to our knowledge of the Jupiter-family comets (JFCs). The difficulty of such a study is the commonly low gas and dust productions of these comets. Long-period, nearly-isotropic comets from the Oort cloud are better known from Earth-based observations. On the other hand, Jupiter-family comets are more easily accessed by space missions. However, unique opportunities to observe Jupiter-family comets are offered when these objects come by chance close to the Earth. About a dozen JFCs were successfully observed by radio techniques up to now. No obvious evidence for different properties between JFCs and other families of comets is found.
From millimeter and optical observations of the Jupiter-family comet 17P/Holmes performed soon after its huge outburst of October 24, 2007, we derive 14 N/15N = 139 +/- 26 in HCN, and 14N/15N = 165 +/- 40 in CN, establishing that HCN has the same non -terrestrial isotopic composition as CN. The same conclusion is obtained for the long-period comet C/1995 O1 (Hale-Bopp) after a reanalysis of previously published measurements. These results are compatible with HCN being the prime parent of CN in cometary atmospheres. The 15N excess relative to the Earth atmospheric value indicates that N-bearing volatiles in the solar nebula underwent important N isotopic fractionation at some stage of Solar System formation. HCN molecules never isotopically equilibrated with the main nitrogen reservoir in the solar nebula before being incorporated in Oort-cloud and Kuiper-belt comets. The 12C/13C ratios in HCN and CN are measured to be consistent with the terrestrial value.
We present a sensitive 3-sigma upper limit of 1.1% for the HNC/HCN abundance ratio in comet 73P/Schwassmann-Wachmann (Fragment B), obtained on May 10-11, 2006 using Caltech Submillimeter Observatory (CSO). This limit is a factor of ~7 lower than the values measured previously in moderately active comets at 1 AU from the Sun. Comet 73P/Schwassmann-Wachmann was depleted in most volatile species, except of HCN. The low HNC/HCN ratio thus argues against HNC production from polymers produced from HCN. However, thermal degradation of macromolecules, or polymers, produced from ammonia and carbon compounds, such as acetylene, methane, or ethane appears a plausible explanation for the observed variations of the HNC/HCN ratio in moderately active comets, including the very low ratio in comet 73P/Schwassmann-Wachmann reported here. Similar polymers have been invoked previously to explain anomalous 14N/15N ratios measured in cometary CN.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا