ترغب بنشر مسار تعليمي؟ اضغط هنا

In a companion paper we have reported a $>5sigma$ detection of degree scale $B $-mode polarization at 150 GHz by the BICEP2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call deprojection, for filtering the leading order beam-induced contamination from time ordered data, and show that it removes power from BICEP2s $BB$ spectrum consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on $BB$ contamination from individual sources of potential systematics. We find that systematics contribute $BB$ power that is a factor $sim10times$ below BICEP2s 3-year statistical uncertainty, and negligible compared to the observed $BB$ signal. The contribution to the best-fit tensor/scalar ratio is at a level equivalent to $r=(3-6)times10^{-3}$.
117 - P. A. R Ade 2014
(abridged for arXiv) We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around $ellsim80$. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of $approx300mumathrm{K}_mathrm{CMB}sqrt{s}$. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes $Q$ and $U$. We find an excess of $B$-mode power over the base lensed-LCDM expectation in the range $30< ell< 150$, inconsistent with the null hypothesis at a significance of $> 5sigma$. Through jackknife tests and simulations we show that systematic contamination is much smaller than the observed excess. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power $sim(5-10)times$ smaller than the observed excess signal. However, these models are not sufficiently constrained to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed and its spectral index is found to be consistent with that of the CMB, disfavoring dust at $1.7sigma$. The observed $B$-mode power spectrum is well fit by a lensed-LCDM + tensor theoretical model with tensor-to-scalar ratio $r=0.20^{+0.07}_{-0.05}$, with $r=0$ disfavored at $7.0sigma$. Accounting for the contribution of foreground dust will shift this value downward by an amount which will be better constrained with upcoming data sets.
BICEP1 is a millimeter-wavelength telescope designed specifically to measure the inflationary B-mode polarization of the Cosmic Microwave Background (CMB) at degree angular scales. We present results from an analysis of the data acquired during three seasons of observations at the South Pole (2006 to 2008). This work extends the two-year result published in Chiang et al. (2010), with additional data from the third season and relaxed detector-selection criteria. This analysis also introduces a more comprehensive estimation of band-power window functions, improved likelihood estimation methods and a new technique for deprojecting monopole temperature-to-polarization leakage which reduces this class of systematic uncertainty to a negligible level. We present maps of temperature, E- and B-mode polarization, and their associated angular power spectra. The improvement in the map noise level and polarization spectra error bars are consistent with the 52% increase in integration time relative to Chiang et al. (2010). We confirm both self-consistency of the polarization data and consistency with the two-year results. We measure the angular power spectra at 21 <= l <= 335 and find that the EE spectrum is consistent with Lambda Cold Dark Matter (LCDM) cosmology, with the first acoustic peak of the EE spectrum now detected at 15sigma. The BB spectrum remains consistent with zero. From B-modes only, we constrain the tensor-to-scalar ratio to r = 0.03+0.27-0.23, or r < 0.70 at 95% confidence level.
The BICEP experiment was designed specifically to search for the signature of inflationary gravitational waves in the polarization of the cosmic microwave background (CMB). Using a novel small-aperture refractor and 49 pairs of polarization-sensitive bolometers, BICEP has completed 3 years of successful observations at the South Pole beginning in 2006 February. To constrain the amplitude of the inflationary B-mode polarization, which is expected to be at least 7 orders of magnitude fainter than the 3 K CMB intensity, precise control of systematic effects is essential. This paper describes the characterization of potential systematic errors for the BICEP experiment, supplementing a companion paper on the initial cosmological results. Using the analysis pipelines for the experiment, we have simulated the impact of systematic errors on the B-mode polarization measurement. Guided by these simulations, we have established benchmarks for the characterization of critical instrumental properties including bolometer relative gains, beam mismatch, polarization orientation, telescope pointing, sidelobes, thermal stability, and timestream noise model. A comparison of the benchmarks with the measured values shows that we have characterized the instrument adequately to ensure that systematic errors do not limit BICEPs 2-year results, and identifies which future refinements are likely necessary to probe inflationary B-mode polarization down to levels below a tensor-to-scalar ratio r = 0.1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا