ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of the BICEP Telescope for High-Precision Cosmic Microwave Background Polarimetry

138   0   0.0 ( 0 )
 نشر من قبل Yuki Takahashi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The BICEP experiment was designed specifically to search for the signature of inflationary gravitational waves in the polarization of the cosmic microwave background (CMB). Using a novel small-aperture refractor and 49 pairs of polarization-sensitive bolometers, BICEP has completed 3 years of successful observations at the South Pole beginning in 2006 February. To constrain the amplitude of the inflationary B-mode polarization, which is expected to be at least 7 orders of magnitude fainter than the 3 K CMB intensity, precise control of systematic effects is essential. This paper describes the characterization of potential systematic errors for the BICEP experiment, supplementing a companion paper on the initial cosmological results. Using the analysis pipelines for the experiment, we have simulated the impact of systematic errors on the B-mode polarization measurement. Guided by these simulations, we have established benchmarks for the characterization of critical instrumental properties including bolometer relative gains, beam mismatch, polarization orientation, telescope pointing, sidelobes, thermal stability, and timestream noise model. A comparison of the benchmarks with the measured values shows that we have characterized the instrument adequately to ensure that systematic errors do not limit BICEPs 2-year results, and identifies which future refinements are likely necessary to probe inflationary B-mode polarization down to levels below a tensor-to-scalar ratio r = 0.1.



قيم البحث

اقرأ أيضاً

The compelling science case for the observation of B-mode polarization in the cosmic microwave background (CMB) is driving the CMB community to expand the observed sky fraction, either by extending survey sizes or by deploying receivers to potential new northern sites. For ground-based CMB instruments, poorly-mixed atmospheric water vapor constitutes the primary source of short-term sky noise. This results in short-timescale brightness fluctuations, which must be rejected by some form of modulation. To maximize the sensitivity of ground-based CMB observations, it is useful to understand the effects of atmospheric water vapor over timescales and angular scales relevant for CMB polarization measurements. To this end, we have undertaken a campaign to perform a coordinated characterization of current and potential future observing sites using scanning 183 GHz water vapor radiometers (WVRs). So far, we have deployed two identical WVR units; one at the South Pole, Antarctica, and the other at Summit Station, Greenland. The former site has a long heritage of ground-based CMB observations and is the current location of the Bicep/Keck Array telescopes as well as the South Pole Telescope. The latter site, though less well characterized, is under consideration as a northern-hemisphere location for future CMB receivers. Data collection from this campaign began in January 2016 at South Pole and July 2016 at Summit Station. Data analysis is ongoing to reduce the data to a single spatial and temporal statistic that can be used for one-to-one site comparison.
We present a search for axion-like polarization oscillations in the cosmic microwave background (CMB) with observations from the Keck Array. A local axion field induces an all-sky, temporally sinusoidal rotation of CMB polarization. A CMB polarimeter can thus function as a direct-detection experiment for axion-like dark matter. We develop techniques to extract an oscillation signal. Many elements of the method are generic to CMB polarimetry experiments and can be adapted for other datasets. As a first demonstration, we process data from the 2012 observing season to set upper limits on the axion-photon coupling constant in the mass range $10^{-21}$-$10^{-18}~mathrm{eV}$, which corresponds to oscillation periods on the order of hours to months. We find no statistically significant deviations from the background model. For periods larger than $24~mathrm{hr}$ (mass $m < 4.8 times 10^{-20}~mathrm{eV}$), the median 95%-confidence upper limit is equivalent to a rotation amplitude of $0.68^circ$, which constrains the axion-photon coupling constant to $g_{phigamma} < left ( 1.1 times 10^{-11}~mathrm{GeV}^{-1} right ) m/left (10^{-21}~mathrm{eV} right )$, if axion-like particles constitute all of the dark matter. The constraints can be improved substantially with data already collected by the BICEP series of experiments. Current and future CMB polarimetry experiments are expected to achieve sufficient sensitivity to rule out unexplored regions of the axion parameter space.
We present an improved search for axion-like polarization oscillations in the cosmic microwave background (CMB) with observations from the Keck Array. An all-sky, temporally sinusoidal rotation of CMB polarization, equivalent to a time-variable cosmi c birefringence, is an observable manifestation of a local axion field and potentially allows a CMB polarimeter to detect axion-like dark matter directly. We describe improvements to the method presented in previous work, and we demonstrate the updated method with an expanded dataset consisting of the 2012-2015 observing seasons. We set limits on the axion-photon coupling constant for mass $m$ in the range $10^{-23}$-$10^{-18}~mathrm{eV}$, which corresponds to oscillation periods on the order of hours to years. Our results are consistent with the background model. For periods between $1$ and $30~mathrm{d}$ ($1.6 times 10^{-21} leq m leq 4.8 times 10^{-20}~mathrm{eV}$), the $95%$-confidence upper limits on rotation amplitude are approximately constant with a median of $0.27^circ$, which constrains the axion-photon coupling constant to $g_{phigamma} < (4.5 times 10^{-12}~mathrm{GeV}^{-1}) m/(10^{-21}~mathrm{eV}$), if axion-like particles constitute all of the dark matter. More than half of the collected BICEP dataset has yet to be analyzed, and several current and future CMB polarimetry experiments can apply the methods presented here to achieve comparable or superior constraints. In the coming years, oscillation measurements can achieve the sensitivity to rule out unexplored regions of the axion parameter space.
Delensing is an increasingly important technique to reverse the gravitational lensing of the cosmic microwave background (CMB) and thus reveal primordial signals the lensing may obscure. We present a first demonstration of delensing on Planck tempera ture maps using the cosmic infrared background (CIB). Reversing the lensing deflections in Planck CMB temperature maps using a linear combination of the 545 and 857GHz maps as a lensing tracer, we find that the lensing effects in the temperature power spectrum are reduced in a manner consistent with theoretical expectations. In particular, the characteristic sharpening of the acoustic peaks of the temperature power spectrum resulting from successful delensing is detected at a significance of 16$rm{sigma}$, with an amplitude of $A_{rm{delens}} = 1.12 pm 0.07$ relative to the expected value of unity. This first demonstration on data of CIB delensing, and of delensing techniques in general, is significant because lensing removal will soon be essential for achieving high-precision constraints on inflationary B-mode polarization.
204 - D. Herranz , P. Vielva 2011
We aim to present a tutorial on the detection, parameter estimation and statistical analysis of compact sources (far galaxies, galaxy clusters and Galactic dense emission regions) in cosmic microwave background observations. The topic is of great rel evance for current and future cosmic microwave background missions because the presence of compact sources in the data introduces very significant biases in the determination of the cosmological parameters that determine the energy contain, origin and evolution of the universe and because compact sources themselves provide us with important information about the large scale structure of the universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا