ترغب بنشر مسار تعليمي؟ اضغط هنا

46 - R. Howe , R.W. Komm , D. Baker 2015
Near-surface flows measured by the ring-diagram technique of local helioseismology show structures that persist over multiple rotations. We examine these phenomena using data from the {em Global Oscillation Network Group} (GONG) and the {em Helioseis mic and Magnetic Imager} (HMI) and show that a correlation analysis of the structures can be used to estimate the rotation rate as a function of latitude, giving a result consistent with the near-surface rate from global helioseismology and slightly slower than that obtained from a similar analysis of the surface magnetic field strength. At latitudes of 60$^{circ}$ and above the HMI flow data reveal a strong signature of a two-sided zonal flow structure. This signature may be related to recent reports of giant cells in solar convection.
Persistent plasma upflows were observed with Hinodes EUV Imaging Spectrometer (EIS) at the edges of active region (AR) 10978 as it crossed the solar disk. We analyze the evolution of the photospheric magnetic and velocity fields of the AR, model its coronal magnetic field, and compute the location of magnetic null-points and quasi-sepratrix layers (QSLs) searching for the origin of EIS upflows. Magnetic reconnection at the computed null points cannot explain all of the observed EIS upflow regions. However, EIS upflows and QSLs are found to evolve in parallel, both temporarily and spatially. Sections of two sets of QSLs, called outer and inner, are found associated to EIS upflow streams having different characteristics. The reconnection process in the outer QSLs is forced by a large-scale photospheric flow pattern which is present in the AR for several days. We propose a scenario in which upflows are observed provided a large enough asymmetry in plasma pressure exists between the pre-reconnection loops and for as long as a photospheric forcing is at work. A similar mechanism operates in the inner QSLs, in this case, it is forced by the emergence and evolution of the bipoles between the two main AR polarities. Our findings provide strong support to the results from previous individual case studies investigating the role of magnetic reconnection at QSLs as the origin of the upflowing plasma. Furthermore, we propose that persistent reconnection along QSLs does not only drive the EIS upflows, but it is also responsible for a continuous metric radio noise-storm observed in AR 10978 along its disk transit by the Nanc{c}ay Radio Heliograph.
Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d+Au, p+Au and n+Au collisions at sqrt(s_nn) = 200 GeV. The forward proton calorimeter detectors are described and a procedure for determining collision ce ntrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p+Au and n+Au collisions in the data. A weighted combination of the yield of p+Au and n+Au is constructed to build a reference for Au+Au collisions that better matches the isospin composition of the gold nucleus. The p_T and centrality dependence of the yield of this improved reference system is found to match that of d+Au. The shape of the charged particle transverse momentum distribution is observed to extrapolate smoothly from pbar+p to central d+Au as a function of the charged particle pseudorapidity density. The asymmetry of positively- and negatively-charged hadron production in p+Au is compared to that of n+Au. No significant asymmetry is observed at mid-rapidity. These studies augment recent results from experiments at the LHC and RHIC facilities to give a more complete description of particle production in p+A and d+A collisions, essential for the understanding the medium produced in high energy nucleus-nucleus collisions.
As an observational case study, we consider the origin of a prominent poleward surge of leading polarity, visible in the magnetic butterfly diagram during Solar Cycle 24. A new technique is developed for assimilating individual regions of strong magn etic flux into a surface flux transport model. By isolating the contribution of each of these regions, the model shows the surge to originate primarily in a single high-latitude activity group consisting of a bipolar active region present in Carrington Rotations 2104-05 (November 2010-January 2011) and a multipolar active region in Rotations 2107-08 (February-April 2011). This group had a strong axial dipole moment opposed to Joys law. On the other hand, the modelling suggests that the transient influence of this group on the butterfly diagram will not be matched by a large long-term contribution to the polar field, because of its location at high latitude. This is in accordance with previous flux transport models.
Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinodes EUV Imaging Spectrometer (EIS) instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR) 11389. The composition maps show how FIP bias evolves within the decaying AR from 2012 January 4-6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the ARs decay phase, small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing time scales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Finally, the FIP bias still remains dominantly coronal only in a part of the ARs high-flux density core. We conclude that in the decay phase of an ARs lifetime, the FIP bias is becoming increasingly modulated by episodes of small-scale flux emergence, i.e. decreasing the ARs overall FIP bias. Our results show that magnetic field evolution plays an important role in compositional changes during AR development, revealing a more complex relationship than expected from previous well-known Skylab results showing that FIP bias increases almost linearly with age in young ARs (Widing $&$ Feldman, 2001, ApJ, 555, 426).
Motivated by the idea that a subset of HVCs trace dark matter substructure in the Local Group, we search for signs of star formation in the Smith Cloud, a nearby ~2x10^6 Msun HVC currently falling into the Milky Way. Using GALEX NUV and WISE/2MASS NI R photometry, we apply a series of color and apparent magnitude cuts to isolate candidate O and B stars that are plausibly associated with the Smith Cloud. We find an excess of stars along the line of sight to the cloud, but not at a statistically significant level relative to a control region. The number of stars found in projection on the cloud after removing an estimate of the contamination by the Milky Way implies an average star formation rate surface density of 10^(-4.8 +/- 0.3) Msun yr^(-1) kpc^(-2), assuming the cloud has been forming stars at a constant rate since its first passage through the Milky Way ~70 Myr ago. This value is consistent with the star formation rate expected based on the average gas density of the cloud. We also discuss how the newly discovered star forming galaxy Leo P has very similar properties to the Smith Cloud, but its young stellar population would not have been detected at a statistically significant level using our method. Thus, we cannot yet rule out the idea that the Smith Cloud is really a dwarf galaxy.
The paper contains a new proof that a complete, non-compact hyperbolic $3$-manifold $M$ with finite volume contains an immersed, closed, quasi-Fuchsian surface.
Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent ARs during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube (HFT) at the interface between the CME and the neighbouring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is re-directed towards remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (10^{10} cm^{-3}) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale re-configuration of the coronal magnetic field.
78 - Mark D. Baker 2013
The azimuthal asymmetry and the transverse momentum of forward produced charged hadrons in deep inelastic muon scattering have been studied as a function of the event kinematics and of the hadron variables. Primordial $k_T$ of the struck parton and O ($alpha_s$) corrections to the cross-section are expected to contribute to the transverse momentum and the azimuthal asymmetry of hadrons. The data show some unexpected dependences not present in a Monte Carlo simulation which includes the theoretical parton-level azimuthal asymmetry.
Using spectra obtained by the EIS instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359 arcsec x 485 arcsec. The abundance map provides first io nization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the AR age, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the ARs main polarity inversion line where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configfiuration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا