ترغب بنشر مسار تعليمي؟ اضغط هنا

FIP Bias Evolution in a Decaying Active Region

115   0   0.0 ( 0 )
 نشر من قبل Deborah Baker
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinodes EUV Imaging Spectrometer (EIS) instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR) 11389. The composition maps show how FIP bias evolves within the decaying AR from 2012 January 4-6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the ARs decay phase, small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing time scales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Finally, the FIP bias still remains dominantly coronal only in a part of the ARs high-flux density core. We conclude that in the decay phase of an ARs lifetime, the FIP bias is becoming increasingly modulated by episodes of small-scale flux emergence, i.e. decreasing the ARs overall FIP bias. Our results show that magnetic field evolution plays an important role in compositional changes during AR development, revealing a more complex relationship than expected from previous well-known Skylab results showing that FIP bias increases almost linearly with age in young ARs (Widing $&$ Feldman, 2001, ApJ, 555, 426).



قيم البحث

اقرأ أيضاً

Understanding elemental abundance variations in the solar corona provides an insight into how matter and energy flow from the chromosphere into the heliosphere. Observed variations depend on the first ionization potential (FIP) of the main elements o f the Suns atmosphere. High-FIP elements (>10 eV) maintain photospheric abundances in the corona, whereas low-FIP elements have enhanced abundances. Conversely, inverse FIP (IFIP) refers to the enhancement of high-FIP or depletion of low-FIP elements. We use spatially resolved spectroscopic observations, specifically the Ar XIV/Ca XIV intensity ratio, from Hinodes Extreme-ultraviolet Imaging Spectrometer to investigate the distribution and evolution of plasma composition within two confined flares in a newly emerging, highly sheared active region. During the decay phase of the first flare, patches above the flare ribbons evolve from the FIP to the IFIP effect, while the flaring loop tops show a stronger FIP effect. The patch and loop compositions then evolve toward the pre-flare basal state. We propose an explanation of how flaring in strands of highly sheared emerging magnetic fields can lead to flare-modulated IFIP plasma composition over coalescing umbrae which are crossed by flare ribbons. Subsurface reconnection between the coalescing umbrae leads to the depletion of low-FIP elements as a result of an increased wave flux from below. This material is evaporated when the flare ribbons cross the umbrae. Our results are consistent with the ponderomotive fractionation model (Laming2015) for the creation of IFIP-biased plasma.
Active regions often show S-shaped structures in the corona called sigmoids. These are highly sheared and twisted loops formed along the polarity inversion line. They are considered to be one of the best pre-eruption signatures for CMEs. Here, we inv estigate the thermodynamic evolution of an on-disk sigmoid observed during December 24-28, 2015. For this purpose, we have employed Emission Measure (EM) and filter-ratio techniques on the observations recorded by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and X-ray Telescope (XRT) onboard Hinode. The EM analysis showed multi-thermal plasma along the sigmoid and provided a peak temperature of 10-12.5 MK for all observed flares. The sigmoidal structure showed emission from Fe XVIII (93.93 {AA}) and Fe XXI 128.75 {AA}) lines in the AIA 94 and 131 {AA} channels, respectively. Our results show that the hot plasma is often confined to very hot strands. The temperature obtained from the EM analysis was found to be in good agreement with that obtained using the XRT, AIA, and GOES filter-ratio methods. These results provide important constraints for the thermodynamic modeling of sigmoidal structures in the core of active regions. Moreover, this study also benchmarks different techniques available for temperature estimation in solar coronal structures.
125 - C. Kuckein 2013
Several scenarios explaining how filaments are formed can be found in literature. In this paper, we analyzed the observations of an active region filament and critically evaluated the observed properties in the context of current filament formation m odels. This study is based on multi-height spectropolarimetric observations. The inferred vector magnetic field has been extrapolated starting either from the photosphere or from the chromosphere. The line-of-sight motions of the filament, which was located near disk center, have been analyzed inferring the Doppler velocities. We conclude that a part of the magnetic structure emerged from below the photosphere.
Persistent plasma upflows were observed with Hinodes EUV Imaging Spectrometer (EIS) at the edges of active region (AR) 10978 as it crossed the solar disk. We analyze the evolution of the photospheric magnetic and velocity fields of the AR, model its coronal magnetic field, and compute the location of magnetic null-points and quasi-sepratrix layers (QSLs) searching for the origin of EIS upflows. Magnetic reconnection at the computed null points cannot explain all of the observed EIS upflow regions. However, EIS upflows and QSLs are found to evolve in parallel, both temporarily and spatially. Sections of two sets of QSLs, called outer and inner, are found associated to EIS upflow streams having different characteristics. The reconnection process in the outer QSLs is forced by a large-scale photospheric flow pattern which is present in the AR for several days. We propose a scenario in which upflows are observed provided a large enough asymmetry in plasma pressure exists between the pre-reconnection loops and for as long as a photospheric forcing is at work. A similar mechanism operates in the inner QSLs, in this case, it is forced by the emergence and evolution of the bipoles between the two main AR polarities. Our findings provide strong support to the results from previous individual case studies investigating the role of magnetic reconnection at QSLs as the origin of the upflowing plasma. Furthermore, we propose that persistent reconnection along QSLs does not only drive the EIS upflows, but it is also responsible for a continuous metric radio noise-storm observed in AR 10978 along its disk transit by the Nanc{c}ay Radio Heliograph.
We study the spatial distribution and evolution of the slope of the Emission Measure between 1 and 3~MK in the core active region NOAA~11193, first when it appeared near the central meridian and then again when it re-appeared after a solar rotation. We use observations recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) aboard Hinode, with a new radiometric calibration. We also use observations from the Atmospheric Imaging Assembly (AIA) aboard Solar Dynamics Observatory (SDO). We present the first spatially resolved maps of the EM slope in the 1--3~MK range within the core of the AR using several methods, both approximate and from the Differential Emission Measure (DEM). A significant variation of the slope is found at different spatial locations within the active region. We selected two regions that were not affected too much by any line-of-sight lower temperature emission. We found that the EM had a power law of the form EM~$propto T^{b}$, with b = 4.4$pm0.4$, and 4.6$pm0.4$, during the first and second appearance of the active region, respectively. During the second rotation, line-of-sight effects become more important, although difficult to estimate. We found that the use of the ground calibration for Hinode/EIS and the approximate method to derive the Emission Measure, used in previous publications, produce an underestimation of the slopes. The EM distribution in active region cores is generally found to be consistent with high frequency heating, and stays more or less the same during the evolution of the active region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا