ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the analysis of near-infrared imaging, polarimetric and spectroscopic observations of the powerful radio galaxy 3C433, obtained with the HST and UKIRT telescopes. The high spatial resolution of HST allows us to study the near-nuclear region s of the galaxy (<1 kpc). In line with previous observations, we find that 3C433 has an unresolved core source that is detected in all near-IR bands, but dominates over the host galaxy emission at 2.05 um. Our analysis reveals: (1) the presence of a dust lane aligned close to perpendicular (PA$=70pm5degr$) to the inner radio jet axis (PA$=-12pm2degr$); (2) a steep slope to the near-IR SED ($alpha=5.8pm0.1$; F$_{ u}propto u^{-alpha}$); (3) an apparent lack of broad permitted emission lines at near-IR wavelengths, in particular the absence of a broad Pa$alpha$ emission line; and (4) high intrinsic polarization for the unresolved core nuclear source ($8.6pm1$ per cent), with an E-vector perpendicular (PA=$83.0pm 2.3degr$) to the inner radio jet. Using five independent techniques we determine an extinction to the compact core source in the range 3<A_V<67 mag. An analysis of the long wavelength SED rules out a synchrotron origin for the high near-IR polarization of the compact core source. Therefore, scattering and dichroic extinction are plausible polarizing mechanisms, although in both of these cases the broad permitted lines from the AGN are required to have a width >10^4 km/s (FWHM) to escape detection in our near-IR spectrum. Dichroic extinction is the most likely polarization mechanism because it is consistent with the various available extinction estimates. In this case, a highly ordered, coherent toroidal magnetic field must be present in the obscuring structure close to the nucleus.
The application of the virial theorem to the Broad Line Region of Active Galactic Nuclei allows Black Hole mass estimates for large samples of objects at all redshifts. In a recent paper we showed that ionizing radiation pressure onto BLR clouds affe cts virial BH mass estimates and we provided empirically calibrated corrections. More recently, a new test of the importance of radiation forces has been proposed: the MBH-sigma relation has been used to estimate MBH for a sample of type-2 AGN and virial relations (with and without radiation pressure) for a sample of type-1 AGN extracted from the same parent population. The observed L/LEdd distribution based on virial BH masses is in good agreement with that based on MBH-sigma only if radiation pressure effects are negligible, otherwise significant discrepancies are observed. In this paper we investigate the effects of intrinsic dispersions associated to the virial relations providing MBH, and we show that they explain the discrepancies between the observed L/LEdd distributions of type-1 and type-2 AGN. These discrepancies in the L/LEdd distributions are present regardless of the general importance of radiation forces, which must be negligible only for a small fraction of sources with large L/LEdd. Average radiation pressure corrections should then be applied in virial MBH estimators until their dependence on observed source physical properties has been fully calibrated. Finally, the comparison between MBH and L/LEdd distributions derived from sigma-based and virial estimators can constrain the variance of BLR physical properties in AGN.
The application of the virial theorem provides a tool to estimate supermassive black hole (BH) masses in large samples of active galactic nuclei (AGN) with broad emission lines at all redshifts and luminosities, if the broad line region (BLR) is grav itationally bound. In this paper we discuss the importance of radiation forces on BLR clouds arising from the deposition of momentum by ionizing photons. Such radiation forces counteract gravitational ones and, if not taken into account, BH masses can be severely underestimated. We provide virial relations corrected for the effect of radiation pressure and we discuss their physical meaning and application. If these corrections to virial masses, calibrated with low luminosity objects, are extrapolated to high luminosities then the BLRs of most quasars might be gravitationally unbound. The importance of radiation forces in high luminosity objects must be thoroughly investigated to assess the reliability of quasar BH masses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا