ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the redshift lower limit of z>0.6035 for the very-high-energy (VHE; E>100 GeV) emitting blazar PKS 1424+240 (PG 1424+240). This limit is inferred from Lyman beta and gamma absorption observed in the far-ultraviolet spectra from the Hubble Space Telescope/Cosmic Origins Spectrograph. No VHE-detected blazar has shown solid spectroscopic evidence of being more distant. At this distance, VHE observations by VERITAS are shown to sample historically large gamma-ray opacity values at 500 GeV, extending beyond tau=4 for low-level models of the extragalactic background light (EBL) and beyond tau=5 for high-levels. The majority of the z=0.6035 absorption-corrected VHE spectrum appears to exhibit a lower flux than an extrapolation of the contemporaneous LAT power-law fit beyond 100 GeV. However, the highest energy VERITAS point is the only point showing agreement with this extrapolation, possibly implying the overestimation of the gamma-ray opacity or the onset of an unexpected VHE spectral feature. A curved log parabola is favored when fitting the full range of gamma-ray data (0.5 to 500 GeV). While fitting the absorption-corrected VHE data alone results in a harder differential power law than that from the full range, the indices derived using three EBL models are consistent with the physically motivated limit set by Fermi acceleration processes.
Gamma-ray bursts (GRBs) have been an enigma since their discovery forty years ago. However, considerable progress unraveling their mysteries has been made in recent years. Developments in observations, theory, and instrumentation have prepared the wa y so that the next decade can be the one in which we finally answer the question, What are gamma-ray bursts? This question encompasses not only what the progenitors are that produce the GRBs, but also how the enormous luminosity of the GRBs, concentrated in gamma rays, is achieved. Observations across the electromagnetic spectrum, from both the ground and space, will be required to fully tackle this important question. This white paper, mostly distilled from a recent study commissioned by the Division of Astrophysics of the American Physical Society, focuses on what very high energy (~100 GeV and above) gamma-ray observations can contribute. Very high energy gamma rays probe the most extreme high energy particle populations in the burst environment, testing models of lepton and proton acceleration in GRBs and constraining the bulk Lorentz factor and opacity of the outflow. Sensitivity improvements of more than an order of magnitude in the very high energy gamma-ray band can be achieved early in the next decade, in order to contribute to this science.
This is a report on the findings of the gamma ray burst working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper is an APS commissioned document, and the overall version has also been released and can be found on astro-ph. This detailed section of the white paper discusses the status of past and current attempts to observe gamma ray bursts at GeV-TeV energies. We concentrate on the potential of future ground-based gamma-ray experiments to observe the highest energy emission ever recorded for GRBs, particularly for those that are nearby and have high Lorentz factors in the GRB jet. It is clear that major advances are possible and that the detection of very high energy emission would have strong implications for GRB models, as well as cosmic ray origin.
This is a short report on the preliminary findings of the gamma ray burst (GRB) working group for the white paper on the status and future of very high energy (VHE; >50 GeV) gamma-ray astronomy. The white paper discusses the status of past and curren t attempts to observe GRBs at GeV-TeV energies, including a handful of low-significance, possible detections. The white paper concentrates on the potential of future ground-based gamma-ray experiments to observe the highest energy emission ever recorded for GRBs, particularly for those that are nearby and have high Lorentz factors in the GRB jet. It is clear that the detection of VHE emission would have strong implications for GRB models, as well as cosmic ray origin. In particular, the extended emission phase (including both afterglow emission and possible flaring) of nearby long GRBs could provide the best possibility for detection. The difficult-to-obtain observations during the prompt phase of nearby long GRBs and short GRBs could also provide particularly strong constraints on the opacity and bulk Lorentz factors surrounding the acceleration site. The synergy with upcoming and existing observatories will, of course, be critical for both identification of GRBs and for multiwavelength/multimessenger studies.
We report observations of tunneling anisotropic magnetoresitance (TAMR) in vertical tunnel devices with a ferromagnetic multilayer-(Co/Pt) electrode and a non-magnetic Pt counter-electrode separated by an AlOx barrier. In stacks with the ferromagneti c electrode terminated by a Co film the TAMR magnitude saturates at 0.15% beyond which it shows only weak dependence on the magnetic field strength, bias voltage, and temperature. For ferromagnetic electrodes terminated by two monolayers of Pt we observe order(s) of magnitude enhancement of the TAMR and a strong dependence on field, temperature and bias. Discussion of experiments is based on relativistic ab initio calculations of magnetization orientation dependent densities of states of Co and Co/Pt model systems.
The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is located at the National Solar Thermal Test Facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The field of solar tracking mirrors (heliostats) around a central receiver tower is used to direct Cherenkov light from atmospheric showers onto secondary mirrors on the tower, which in turn image the light onto cameras of photomultiplier tubes. The STACEE Collaboration has previously reported a detection of the Crab Nebula with approximately 7 standard deviation significance, using 32 heliostats (STACEE-32). This result demonstrates both the viability of the technique and the suitability of the site. We are in the process of completing an upgrade to 48 heliostats (STACEE-48) en route to an eventual configuration using 64 heliostats (STACEE-64) in early 2001. In this paper, we summarize the results obtained on the sensitivity of STACEE-32 and our expectations for STACEE-48 and STACEE-64.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا