ترغب بنشر مسار تعليمي؟ اضغط هنا

What Are Gamma-Ray Bursts -- The Unique Role of Very High Energy Gamma-Ray Observations

157   0   0.0 ( 0 )
 نشر من قبل David A. Williams
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gamma-ray bursts (GRBs) have been an enigma since their discovery forty years ago. However, considerable progress unraveling their mysteries has been made in recent years. Developments in observations, theory, and instrumentation have prepared the way so that the next decade can be the one in which we finally answer the question, What are gamma-ray bursts? This question encompasses not only what the progenitors are that produce the GRBs, but also how the enormous luminosity of the GRBs, concentrated in gamma rays, is achieved. Observations across the electromagnetic spectrum, from both the ground and space, will be required to fully tackle this important question. This white paper, mostly distilled from a recent study commissioned by the Division of Astrophysics of the American Physical Society, focuses on what very high energy (~100 GeV and above) gamma-ray observations can contribute. Very high energy gamma rays probe the most extreme high energy particle populations in the burst environment, testing models of lepton and proton acceleration in GRBs and constraining the bulk Lorentz factor and opacity of the outflow. Sensitivity improvements of more than an order of magnitude in the very high energy gamma-ray band can be achieved early in the next decade, in order to contribute to this science.



قيم البحث

اقرأ أيضاً

The synchrotron self-Compton (SSC) emission from Gamma-ray Burst (GRB) forward shock can extend to the very-high-energy (VHE; $E_gamma > $100 GeV) range. Such high energy photons are rare and are attenuated by the cosmic infrared background before re aching us. In this work, we discuss the prospect to detect these VHE photons using the current ground-based Cherenkov detectors. Our calculated results are consistent with the upper limits obtained with several Cherenkov detectors for GRB 030329, GRB 050509B, and GRB 060505 during the afterglow phase. For 5 bursts in our nearby GRB sample (except for GRB 030329), current ground-based Cherenkov detectors would not be expected to detect the modeled VHE signal. Only for those very bright and nearby bursts like GRB 030329, detection of VHE photons is possible under favorable observing conditions and a delayed observation time of $la$10 hours.
134 - Daniel Kocevski 2011
I investigate the origin of the observed correlation between a GRBs nuFnu spectral peak Epk and its isotropic equivalent energy Eiso through the use of a population synthesis code to model the prompt gamma-ray emission from GRBs. By using prescriptio ns for the distribution of prompt spectral parameters as well as the populations luminosity function and co-moving rate density, I generate a simulated population of GRBs and examine how bursts of varying spectral properties and redshift would appear to a gamma-ray detector here on Earth. I find that a strong observed correlation can be produced between the source frame Epk and Eiso for the detected population despite the existence of only a weak and broad correlation in the original simulated population. The energy dependance of a gamma-ray detectors flux-limited detection threshold acts to produce a correlation between the source frame Epk and Eiso for low luminosity GRBs, producing the left boundary of the observed correlation. Conversely, very luminous GRBs are found at higher redshifts than their low luminosity counterparts due to the standard Malquest bias, causing bursts in the low Epk, high Eiso regime to go undetected because their Epk values would be redshifted to energies at which most gamma-ray detectors become less sensitive. I argue that it is this previously unexamined effect which produces the right boundary of the observed correlation. Therefore, the origin of the observed correlation is a complex combination of the instruments detection threshold, the intrinsic cutoff in the GRB luminosity function, and the broad range of redshifts over which GRBs are detected. These simulations serve to demonstrate how selection effects caused by a combination of instrumental sensitivity and the cosmological nature of an astrophysical population can act to produce an artificially strong correlation between observed properties.
We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space -- unless the baryonic loading is much larger than previously anticipated.
We present a new catalog of TeV gamma-ray sources using 1523 days of data from the High Altitude Water Cherenkov (HAWC) observatory. The catalog represents the most sensitive survey of the Northern gamma-ray sky at energies above several TeV, with th ree times the exposure compared to the previous HAWC catalog, 2HWC. We report 65 sources detected at $geq$ 5 sigma significance, along with the positions and spectral fits for each source. The catalog contains eight sources that have no counterpart in the 2HWC catalog, but are within $1^circ$ of previously detected TeV emitters, and twenty sources that are more than $1^circ$ away from any previously detected TeV source. Of these twenty new sources, fourteen have a potential counterpart in the fourth textit{Fermi} Large Area Telescope catalog of gamma-ray sources. We also explore potential associations of 3HWC sources with pulsars in the ATNF pulsar catalog and supernova remnants in the Galactic supernova remnant catalog.
129 - R. Atkins , W. Benbow , D. Berley 2005
The Milagro gamma-ray observatory employs a water Cherenkov detector to observe extensive air showers produced by high energy particles interacting in the Earths atmosphere. Milagro has a wide field of view and high duty cycle, monitoring the norther n sky almost continuously in the 100 GeV to 100 TeV energy range. Milagro is, thus, uniquely capable of searching for very high-energy emission from gamma-ray bursts (GRBs) during the prompt emission phase. Detection of >100 GeV counterparts would place powerful constraints on GRB mechanisms. Twenty-five satellite-triggered GRBs occurred within the field of view of Milagro between January 2000 and December 2001. We have searched for counterparts to these GRBs and found no significant emission from any of the burst positions. Due to the absorption of high-energy gamma rays by the extragalactic background light, detections are only expected to be possible for redshifts less than ~0.5. Three of the GRBs studied have measured redshifts. GRB 010921 has a redshift low enough (0.45) to allow an upper limit on the fluence to place an observational constraint on potential GRB models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا