ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the effects of a finite chemical potential on the occurrence of cavitation in a quark gluon plasma (QGP). We solve the evolution equations of second order viscous relativistic hydrodynamics using three different equations of state. The first one was derived in lattice QCD and represents QGP at zero chemical potential. It was previously used in the study of cavitation. The second equation of state also comes from lattice QCD and is a recent parametrization of the QGP at finite chemical potential. The third one is similar to the MIT equation of state with chemical potential and includes nonperturbative effects through the gluon condensates. We conclude that at finite chemical potential cavitation in the QGP occurs earlier than at zero chemical potential. We also consider transport coefficients from a holographic model of a non-conformal QGP at zero chemical potential. In this case cavitation does not occur.
Our knowledge of the equation of state of the quark gluon plasma has been continuously growing due to the experimental results from heavy ion collisions, due to recent astrophysical measurements and also due to the advances in lattice QCD calculation s. The new findings about this state may have consequences on the time evolution of the early Universe, which can estimated by solving the Friedmann equations. The solutions of these equations give the time evolution of the energy density and also of the temperature in the beginning of the Universe. In this work we compute the time evolution of the QGP in the early Universe, comparing several equations of state, some of them based on the MIT bag model (and on its variants) and some of them based on lattice QCD calculations. Among other things, we investigate the effects of a finite baryon chemical potential in the evolution of the early Universe.
In this work we study wave propagation in dissipative relativistic fluids described by a simplified set of the 2nd order viscous conformal hydrodynamic equations. Small amplitude waves are studied within the linearization approximation while waves wi th large amplitude are investigated using the reductive perturbation method. Our results indicate the presence of a soliton-like wave solution in 2nd order conformal hydrodynamics despite the presence of dissipation and relaxation effects.
We study linear and nonlinear wave propagation in a dense and cold hadron gas and also in a cold quark gluon plasma, taking viscosity into account and using the Navier-Stokes equation. The equation of state of the hadronic phase is derived from the n onlinear Walecka model in the mean field approximation. The quark gluon plasma phase is described by the MIT equation of state. We show that in a hadron gas viscosity strongly damps wave propagation and also hinders shock wave formation. This marked difference between the two phases may have phenomenological consequences and lead to new QGP signatures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا