ترغب بنشر مسار تعليمي؟ اضغط هنا

Partial transfer absorption imaging (PTAI) of ultracold atoms allows for repeated and minimally-destructive measurements of an atomic ensemble. Here, we present a reconstruction technique based on PTAI that can be used to piece together the non-unifo rm spatial profile of high-density atomic samples using multiple measurements. We achieved a thirty-fold increase of the effective dynamic range of our imaging, and were able to image otherwise saturated samples with unprecedented accuracy of both low- and high-density features.
Using a multiple-image reconstruction method applied to a harmonically trapped Bose gas, we determine the equation of state of uniform matter across the critical transition point, within the local density approximation. Our experimental results provi de the canonical description of pressure as a function of the specific volume, emphasizing the dramatic deviations from the ideal Bose gas behavior caused by interactions. They also provide clear evidence for the non-monotonic behavior with temperature of the chemical potential, which is a consequence of superfluidity. The measured thermodynamic quantities are compared to mean-field predictions available for the interacting Bose gas. The limits of applicability of the local density approximation near the critical point are also discussed, focusing on the behavior of the isothermal compressibility.
We experimentally investigate the dynamics of spin solitary waves (magnetic solitons) in a harmonically trapped, binary superfluid mixture. We measure the in-situ density of each pseudospin component and their relative local phase via an interferomet ric technique we developed, and as such, fully characterise the magnetic solitons while they undergo oscillatory motion in the trap. Magnetic solitons exhibit non-dispersive, dissipationless long-time dynamics. By imprinting multiple magnetic solitons in our ultracold gas sample, we engineer binary collisions between solitons of either same or opposite magnetisation and map out their trajectories.
We propose and realize a deeply sub-wavelength optical lattice for ultracold neutral atoms using $N$ resonantly Raman-coupled internal degrees of freedom. Although counter-propagating lasers with wavelength $lambda$ provided two-photon Raman coupling , the resultant lattice-period was $lambda/2N$, an $N$-fold reduction as compared to the conventional $lambda/2$ lattice period. We experimentally demonstrated this lattice built from the three $F=1$ Zeeman states of a $^{87}{rm Rb}$ Bose-Einstein condensate, and generated a lattice with a $lambda/6= 132 {rm nm}$ period from $lambda=790 {rm nm}$ lasers. Lastly, we show that adding an additional RF coupling field converts this lattice into a superlattice with $N$ wells uniformly spaced within the original $lambda/2$ unit cell.
We describe a technique to emulate a two-level PT-symmetric spin Hamiltonian, replete with gain and loss, using only the unitary dynamics of a larger quantum system. This we achieve by embedding the two-level system in question in a subspace of a fou r-level Hamiltonian. Using an textit{amplitude recycling} scheme that couples the levels exterior to the PT-symmetric subspace, we show that it is possible to emulate the desired behaviour of the PT-symmetric Hamiltonian without depleting the exterior, reservoir levels. We are thus able to extend the emulation time indefinitely, despite the non-unitary PT dynamics. We propose a realistic experimental implementation using dynamically decoupled magnetic sublevels of ultracold atoms.
Decoherence of quantum systems due to uncontrolled fluctuations of the environment presents fundamental obstacles in quantum science. `Clock transitions which are insensitive to such fluctuations are used to improve coherence, however, they are not p resent in all systems or for arbitrary system parameters. Here, we create a trio of synthetic clock transitions using continuous dynamical decoupling in a spin-1 Bose-Einstein condensate in which we observe a reduction of sensitivity to magnetic field noise of up to four orders of magnitude; this work complements the parallel work by Anderson et al. (submitted, 2017). In addition, using a concatenated scheme, we demonstrate suppression of sensitivity to fluctuations in our control fields. These field-insensitive states represent an ideal foundation for the next generation of cold atom experiments focused on fragile many-body phases relevant to quantum magnetism, artificial gauge fields, and topological matter.
We observed a new mechanism for vortex nucleation in Bose-Einstein condensates (BECs) subject to synthetic magnetic fields. We made use of a strong synthetic magnetic field initially localized between a pair of merging BECs to rapidly create vortices in the bulk of the merged condensate. Unlike previous implementations and in agreement with our Gross-Pitaevskii equation simulations, our dynamical process rapidly injects vortices into our systems bulk, and with initial number in excess of the systems equilibrium vortex number.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا