ترغب بنشر مسار تعليمي؟ اضغط هنا

174 - D. Sornette 2015
Humankind is confronted with a nuclear stewardship curse, facing the prospect of needing to manage nuclear products over long time scales in the face of the short-time scales of human polities. I propose a super Manhattan-type effort to rejuvenate th e nuclear energy industry to overcome the current dead-end in which it finds itself, and by force, humankind has trapped itself in. A 1% GDP investment over a decade in the main nuclear countries could boost economic growth with a focus on the real world, epitomised by nuclear physics/chemistry/engineering/economics with well defined targets. By investing vigorously to obtain scientific and technological breakthroughs, we can create the spring of a world economic rebound based on new ways of exploiting nuclear energy, both more safely and more durably.
147 - D. Sornette 2014
This short review presents a selected history of the mutual fertilization between physics and economics, from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics c ompared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistic physics. Recent extensions in term of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it would not cover the dynamical field of agent based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ``Emerging Market Intelligence hypothesis to reconcile the pervasive presence of ``noise traders with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.
57 - D. Sornette 2010
In a Forum published in EOS Transactions AGU (2009) entitled Lies, damned lies and statistics (in Geology), Vermeesch (2009) claims that statistical significant is not the same as geological significant, in other words, statistical tests may be misle ading. In complete contradiction, we affirm that statistical tests are always informative. We detail the several mistakes of Vermeesch in his initial paper and in his comments to our reply. The present text is developed in the hope that it can serve as an illuminating pedagogical exercise for students and lecturers to learn more about the subtleties, richness and power of the science of statistics.
90 - D. Sornette 2009
Many illnesses are associated with an alteration of the immune system homeostasis due to any combination of factors, including exogenous bacterial insult, endogenous breakdown (e.g., development of a disease that results in immuno suppression), or an exogenous hit like surgery that simultaneously alters immune responsiveness and provides access to bacteria, or genetic disorder. We conjecture that, as a consequence of the co-evolution of the immune system of individuals with the ecology of pathogens, the homeostasis of the immune system requires the influx of pathogens. This allows the immune system to keep the ever present pathogens under control and to react and adjust fast to bursts of infections. We construct the simplest and most general system of rate equations which describes the dynamics of five compartments: healthy cells, altered cells, adaptive and innate immune cells, and pathogens. We study four regimes obtained with or without auto-immune disorder and with or without spontaneous proliferation of infected cells. Over all regimes, we find that seven different states are naturally described by the model: (i) strong healthy immune system, (ii) healthy organism with evanescent immune cells, (iii) chronic infections, (iv) strong infections, (v) cancer, (vi) critically ill state and (vii) death. The analysis of stability conditions demonstrates that these seven states depend on the balance between the robustness of the immune system and the influx of pathogens.
133 - D. Sornette 2008
In this essay, I attempt to provide supporting evidence as well as some balance for the thesis on `Transforming socio-economics with a new epistemology presented by Hollingworth and Mueller (2008). First, I review a personal highlight of my own scien tific path that illustrates the power of interdisciplinarity as well as unity of the mathematical description of natural and social processes. I also argue against the claim that complex systems are in general `not susceptible to mathematical analysis, but must be understood by letting them evolve over time or with simulation analysis. Moreover, I present evidence of the limits of the claim that scientists working within Science II do not make predictions about the future because it is too complex. I stress the potentials for a third `Quantum Science and its associated conceptual and philosophical revolutions, and finally point out some limits of the `new theory of networks.
We present an analysis of oil prices in US$ and in other major currencies that diagnoses unsustainable faster-than-exponential behavior. This supports the hypothesis that the recent oil price run-up has been amplified by speculative behavior of the t ype found during a bubble-like expansion. We also attempt to unravel the information hidden in the oil supply-demand data reported by two leading agencies, the US Energy Information Administration (EIA) and the International Energy Agency (IEA). We suggest that the found increasing discrepancy between the EIA and IEA figures provides a measure of the estimation errors. Rather than a clear transition to a supply restricted regime, we interpret the discrepancy between the IEA and EIA as a signature of uncertainty, and there is no better fuel than uncertainty to promote speculation!
159 - J.B. Satinover 2008
Using an artificial neural network (ANN), a fixed universe of approximately 1500 equities from the Value Line index are rank-ordered by their predicted price changes over the next quarter. Inputs to the network consist only of the ten prior quarterly percentage changes in price and in earnings for each equity (by quarter, not accumulated), converted to a relative rank scaled around zero. Thirty simulated portfolios are constructed respectively of the 10, 20,..., and 100 top ranking equities (long portfolios), the 10, 20,..., 100 bottom ranking equities (short portfolios) and their hedged sets (long-short portfolios). In a 29-quarter simulation from the end of the third quarter of 1994 through the fourth quarter of 2001 that duplicates real-world trading of the same method employed during 2002, all portfolios are held fixed for one quarter. Results are compared to the S&P 500, the Value Line universe itself, trading the universe of equities using the proprietary ``Value Line Ranking System (to which this method is in some ways similar), and to a Martingale method of ranking the same equities. The cumulative returns generated by the network predictor significantly exceed those generated by the S&P 500, the overall universe, the Martingale and Value Line prediction methods and are not eroded by trading costs. The ANN shows significantly positive Jensens alpha, i.e., anomalous risk-adjusted expected return. A time series of its global performance shows a clear antipersistence. However, its performance is significantly better than a simple one-step Martingale predictor, than the Value Line system itself and than a simple buy and hold strategy, even when transaction costs are accounted for.
123 - D. Sornette 2008
This entry in the Encyclopedia of Complexity and Systems Science, Springer present a summary of some of the concepts and calculational tools that have been developed in attempts to apply statistical physics approaches to seismology. We summarize the leading theoretical physical models of the space-time organization of earthquakes. We present a general discussion and several examples of the new metrics proposed by statistical physicists, underlining their strengths and weaknesses. The entry concludes by briefly outlining future directions. The presentation is organized as follows. I Glossary II Definition and Importance of the Subject III Introduction IV Concepts and Calculational Tools IV.1 Renormalization, Scaling and the Role of Small Earthquakes in Models of Triggered Seismicity IV.2 Universality IV.3 Intermittent Periodicity and Chaos IV.4 Turbulence IV.5 Self-Organized Criticality V Competing mechanisms and models V.1 Roots of complexity in seismicity: dynamics or heterogeneity? V.2 Critical earthquakes V.3 Spinodal decomposition V.4 Dynamics, stress interaction and thermal fluctuation effects VI Empirical studies of seismicity inspired by statistical physics VI.1 Early successes and latter subsequent challenges VI.2 Entropy method for the distribution of time intervals between mainshocks VI.3 Scaling of the PDF of Waiting Times VI.4 Scaling of the PDF of Distances Between Subsequent Earthquakes VI.5 The Network Approach VII Future Directions
109 - D. Sornette 2007
We review briefly the concepts underlying complex systems and probability distributions. The later are often taken as the first quantitative characteristics of complex systems, allowing one to detect the possible occurrence of regularities providing a step toward defining a classification of the different levels of organization (the ``universality classes). A rapid survey covers the Gaussian law, the power law and the stretched exponential distributions. The fascination for power laws is then explained, starting from the statistical physics approach to critical phenomena, out-of-equilibrium phase transitions, self-organized criticality, and ending with a large but not exhaustive list of mechanisms leading to power law distributions. A check-list for testing and qualifying a power law distribution from your data is described in 7 steps. This essay enlarges the description of distributions by proposing that ``kings, i.e., events even beyond the extrapolation of the power law tail, may reveal an information which is complementary and perhaps sometimes even more important than the power law distribution. We conclude a list of future directions.
227 - D. Sornette 2005
We present a general prediction scheme of failure times based on updating continuously with time the probability for failure of the global system, conditioned on the information revealed on the pre-existing idiosyncratic realization of the system by the damage that has occurred until the present time. Its implementation on a simple prototype system of interacting elements with unknown random lifetimes undergoing irreversible damage until a global rupture occurs shows that the most probable predicted failure time (mode) may evolve non-monotonically with time as information is incorporated in the prediction scheme. In addition, both the mode, its standard deviation and, in fact, the full distribution of predicted failure times exhibit sensitive dependence on the realization of the system, similarly to ``chaos in spinglasses, providing a multi-dimensional dynamical explanation for the broad distribution of failure times observed in many empirical situations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا