ﻻ يوجد ملخص باللغة العربية
This short review presents a selected history of the mutual fertilization between physics and economics, from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistic physics. Recent extensions in term of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it would not cover the dynamical field of agent based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ``Emerging Market Intelligence hypothesis to reconcile the pervasive presence of ``noise traders with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.
The use of equilibrium models in economics springs from the desire for parsimonious models of economic phenomena that take human reasoning into account. This approach has been the cornerstone of modern economic theory. We explain why this is so, exto
We present an overview of some representative Agent-Based Models in Economics. We discuss why and how agent-based models represent an important step in order to explain the dynamics and the statistical properties of financial markets beyond the Class
This article aims at reviewing recent empirical and theoretical developments usually grouped under the term Econophysics. Since its name was coined in 1995 by merging the words Economics and Physics, this new interdisciplinary field has grown in vari
We study analytically and numerically Minsky instability as a combination of top-down, bottom-up and peer-to-peer positive feedback loops. The peer-to-peer interactions are represented by the links of a network formed by the connections between firms
We present results on simulations of a stock market with heterogeneous, cumulative information setup. We find a non-monotonic behaviour of traders returns as a function of their information level. Particularly, the average informed agents underperfor